Metal Binder Jetting
Automotive Polymers

3D Printed Electrodes Make Microfluidic Devices Cheaper and Quicker to Fabricate

Share this Article

Researchers at Imperial College London wanted to develop a microfluidic biosensor for analysis of cancer cells that was quicker and easier to produce. A microfluidic device involves biological material traveling through tiny channels and electrodes passing electrical current through the material so that a microchip can analyze what the material contains. The Imperial College London scientists focused on the electrode in improving their device – by 3D printing the electrode, they could save a lot of time and money, they discovered.

Dr. Ali Salehi-Reyhani

“We had an idea about how we could pattern these electrodes in a simple manner,” said Imperial College London chemistry department lead researcher Dr. Ali Salehi-Reyhani. “And it is using the patterns of microfluidic channels to pattern that down onto a surface, so you can get these complicated designs that would otherwise be extremely difficult to make.”

The electrode sits between the channels of the microfluidic device, and the biological material flows over it. Dr. Salehi-Reyhani and his team realized that they could design an electrode on a computer and 3D print it.

“We draw something on the PC [personal computer], five minutes later you have your template and half an hour after that you have your got electrodes,” said Dr. Salehi-Reyhani.

They had a little fun with the technology while testing it out, as well.

“We like IronMan so we did a Google image search and loaded it into Photoshop and printed it out,” Dr. Salehi-Reyhani continued.

Conventional labs on a chip use gold electrodes, and while the 3D printed material was not as conductive as gold, it was still conductive enough to get the job done, especially after some improvements made by the researchers.

“All you need was to send an alternating current, alternating voltage to disrupt the cells,” said Dr. Salehi-Reyhani.

Dr. Salehi-Reyhani hopes that the 3D printing of things like electrodes will democratize the creation of highly specialized scientific equipment like microfluidic devices. He believes that the scientific community can benefit from the input of the maker and hacker community, with its inclination towards coming up with cheaper and quicker ways to create things, even for fields like science and health care.

“With our method researchers and startups can more easily design and develop analytical devices, even when they need electronics that can’t be bought off-the-shelf,” he said. “Community hackspaces are great for democratising science, allowing more people to try out new technology solutions. We hope this method will allow bioelectronics to benefit from that ecosystem of hackers getting hands-on with problems and solutions in healthcare.”

The researchers had to make sure that the 3D printed electrode material was compatible with the biomolecules for the bioassay analysis, and they also needed to ensure that the electrode would stick to the substrate upon which the lab on a chip sits. The next step is to produce a microfluidic biosensor that can undergo clinical trials in medical centers for use by non-experts. The biosensor could detect the difference between viral and bacterial infections with just a drop of a patient’s blood. Dr. Salehi-Reyhani also wants to look into developing wearable biosensor applications like sweat analysis.

The research is documented in a paper entitled “Micropatterning of planar metal electrodes by vacuum filling microfluidic channel geometries.” Authors of the paper include Stelios Chatzimichail, Pashini Supramanian, Oscar Ces and Ali Salehi-Reyhani.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

3D Printing News Unpeeled, Live with Joris Peels – Tuesday 9th of August

UCLA Materials Scientists Awarded Grant for 3D Printed Batteries



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

3D Systems Buys High-Speed 3D Printing Firm dp polar

The 3D printing mergers and acquisitions continue apace. On the heels of Markforged’s buyout of Digital Metal and Nano Dimension’s 12 percent purchase of Stratasys, 3D Systems (NYSE: DDD) has...

New Player in Space: X-Bow’s Test Rocket Reaches Orbit with 3D Printed Motors

Just four months after coming out of stealth mode, space technology company X-Bow Launch Systems successfully launched its first rocket in a test carried out in partnership with the Department...

Sakuu Opens Battery 3D Printing Facility in Silicon Valley

Silicon Valley startup Sakuu is using some of the funds from its total $62 million raised to open a new facility for its battery 3D printing platform. The multi-million-dollar site...

US DoE Awards $3M to Fortify and polySpectra for 3D Printed Tooling

The US Department of Energy (DOE) announced 30 projects that have been selected to receive a total of $57.9 million in grants from the Advanced Manufacturing Office (AMO). Among the...