Plant-Derived Photoinitiator Free Resins as Alternatives to Petroleum-Based Photopolymers

Share this Article

In a paper entitled “Photoinitiator Free Resins Composed of Plant-Derived Monomers for the Optical µ-3D Printing of Thermosets,” a group of researchers discusses their investigation of acrylated epoxidized soybean oil (AESO) and mixtures of AESO and vanillin dimethacrylate (VDM) or vanillin diacrylate (VDA) as photosensitive resins for optical 3D printing without any photoinitiator and solvent. Natural oils like these, according to the researchers, are some of the best alternatives to petroleum-based resins.

UV/VIS curing tests were performed on pure AESO and two resin series: AESO/VDM and AESO/VDA. Chemical structure analysis was also performed, as well as Soxhlet extraction, differential scanning calorimetry, thermogravimetric analysis and mechanical testing. The researchers then experimented with the resins using direct laser writing 3D lithography.

“It is known that the acrylic group is more reactive than methacrylic,” the researchers state. “This explains the increase of the induction period and tgel value during the photocross-linking of the resin series AESO/VDM in comparison to AESO. Additionally, the slope of the G’ curve of AESO was steeper than that of the resin series AESO/VDM indicating the quicker formation of the polymer network [50]. High G’ values indicate better mechanical properties of polymers caused by the high density of cross-links. Thus, the higher G’ values of AESO indicate the higher density of cross-links in this polymer (pAESO).”

The researchers discovered through their experiments that AESO tends to form densely cross-linked polymers even without photoinitiators. AESO and AESO/VDM1, they add, can be “great candidates” as renewable materials for DLW 3D lithography.

“It is envisaged that the photostructuring without the photoinitiators is beneficial for the fields of biomedicine, micro-optics and nanophotonics,” they continue. “The avoidance of toxic photoinitiators increases the integrity of biodegradable cell-growth scaffolds and reduces the auto-fluorescence while performing microscopy in vitro or in vivo. The absorbing materials are detrimental for the use in micro-optics and nanophotonics due to their reduced optical resilience and induced signal losses. Moreover, the use of plant-derived materials in such technologies would benefit greatly due to their low toxicity, high biodegradability, and improved recycling options. Finally, it would reduce the dependency on limited and increasingly expensive fossil resources as well as greenhouse gas emission, which are the targets of the European Commission initiated ‘Europe 2020’ strategy.”

The researchers’ real-time photorheometry study “revealed the higher rate of photocross-linking of pure acrylated epoxidized soybean oil than that of its mixture with vanillin dimethacrylate or vanillin diacrylate without a photoinitiator and solvent.” The addition of vanillin dimethacrylate reduced the rate of photocross-linking the values of the glass transition temperature, thermal decomposition temperature and compressive modulus.

“The formation of more linear and/or branched macromolecules considered the vanillin dimethacrylate effect as a plasticizer for acrylated epoxidized soybean oil in photocross-linking without a photoinitiator,” the researchers conclude. “It was experimentally demonstrated that the homopolymer of acrylated epoxidized suitable materials for rapid 3D microstructuring by the direct laser writing lithography technique.”

Since photoinitiators can cause skin irritations and long term contact allergies in people working with them in liquid form, this may be a very good development for those who process DLP and stereolithography parts. Perhaps it would be safer in the final part as well. Any developments in 3D printing materials can now make all existing compatible materials safer and perhaps less expensive so these kinds of developments have to be applauded.

Authors of the paper include Migle Lebedevaite, Jolita Ostrauskaite, Edvinas Skliutas and Mangirdas Malinauskas.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Facebook Comments

Share this Article


Related Articles

3D Printing News Briefs: April 17, 2019

New Developments in Acrylate Oligomers for 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

The BIG IDEAS for UV + EB Technology Conference is the Place to Learn About Photopolymers and 3D Printing

The Radtech BIG IDEAS for UV+EB Technology conference takes place on Tuesday, March 19th and Wednesday, March 20th in Redondo Beach California. The BIG IDEAS for UV+EB Technology is the...

Ireland: Researchers Use 3D Printed Templates to Control and Tune Metallic Nanostructures

Metallic architectures with nanoscale features are in high demand because of their unique electrical and optical properties, but aren’t the easiest to fabricate…unless 3D printing comes into play, of course....

Sponsored

New UV-Curable Engineered Resins for 3D Printing

The rapid growth of 3D printing has challenged manufacturers to find materials that enable the advanced properties needed to support new performance demands. To help additive manufactures move beyond this...

Nanoscribe 3D Printing and Integrating Microscopic Components Directly onto Integrated Circuits

While 3D printing is capable of fabricating large objects, bigger isn’t always better in this industry…a notion that Nanoscribe is very familiar with. The German 3D printer manufacturer is an expert...


Training


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!