This week, GE Additive announced that it has signed a major Memorandum of Understanding (MoU) with the University of Sydney, which includes a master research agreement. Per the agreement, GE Additive will support the university’s vision to create the first metal 3D printing ecosystem in Australia, and will invest a maximum of $1 million in research and development efforts annually over the next ten years to help speed up 3D printing adoption in the region and set up the necessary people and technology to drive education, commercial and economic opportunity, skills and job development, and research.
This agreement with the university is just the latest in a string of recent partnerships that GE Additive has announced in the last several months.
Debbra Rogers, Chief Commercial Officer, GE Additive, said, “We were immediately impressed by the University of Sydney’s vision for additive manufacturing – not just at an academic level, but also because they understand the positive impact this technology can have on Australia’s economy and its workforce in the very near future.
“Additive requires a completely different way of engineering and thinking. Educating and training current workforces with new skills and also getting more engineers into additive takes time and programs need to be developed over a number of years. The University of Sydney recognises this and that in order to build the right mindset, the right skills, the right materials we need to encourage close collaboration between companies, academia and governments.”
The university is actively working to provide intellectual leadership in 3D printing over the next ten years, and this new MoU reinforces its commitment to build a 1,000 square meter Additive Manufacturing and Advanced Materials Processing research facility, which will end up acting as a “focal point,” as GE Additive calls it, for the partnership.
Professor Simon Ringer, the Director of Core Research Facilities at the University of Sydney, said, “This addition to the University’s core research facilities will allow our researchers and research partners to conduct trail-blazing fundamental research, and will directly benefit Australian industry, particularly our aerospace, transport, biomedical and defence sectors.
“We are creating an environment for our researchers to explore the limits of what materials can do, how they are structured, and how to make them. Establishing a world-class capability in Darlington/ Camperdown is a key first step for our grand plans for Advanced Manufacturing in Paramatta/Westmead.”
Additionally, the university will also make an investment in current, and future, GE Additive technologies under the terms of the MoU.
The university’s Vice-Chancellor and Principal Dr Michael Spence said, “This MoU builds on the University’s world-class expertise in the disciplines essential to advanced manufacturing such as materials engineering and integrated digital systems.
“By partnering with GE Additive, an industry leader in additive manufacturing, we can set the agenda for this disruptive technology and ensure that Australia is primed to both participate in, and contribute to, this exciting next phase of the industrial revolution. The collaboration will drive the R&D needed to learn how this disruption to manufacturing can be harnessed for economic benefit. We are especially delighted that this initiative aligns with our plan to establish a new campus at Parramatta/ Westmead, where advanced manufacturing will be a key focus.”
GE Additive and the University of Sydney will also cooperate on developing new applications, as well as potentially new 3D printing industries, to drive positive economic and commercial impact. GE Additive’s funding will help expand upon the university’s current materials science and advanced manufacturing research infrastructure and capabilities by helping to increase new R&D efforts into analytics, material and powder technologies, and sensing. Both will also enjoy bilateral access to the other’s networks of academic, government, and industry stakeholders.
The aforementioned master research agreement, which was agreed to within the terms of the MoU, will cover three separate areas:
- Image processing and data analytics
- Materials and powder technologies, such as alloy design and modification, post-processing optimization, and materials gaps in repairs
- Sensing technologies and advanced materials characterization
This last area will build on the university’s existing experience with electron microscopy and the electron beam melting (EBM) technology developed by GE Additive company Arcam.
Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.
[Images provided by GE Additive]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Lockheed Martin Adds 16,000 Square Feet of 3D Printing to Texas Facility
Defense giant Lockheed Martin has unveiled a substantial increase in its additive manufacturing (AM) capabilities with an expansion of its facility in Grand Prairie, Texas. The addition includes some 16,000...
EOS Launches New P3 NEXT SLS 3D Printer at Formnext 2004
EOS, the German-US leader in additive manufacturing (AM) solutions, has launched the P3 NEXT selective laser sintering (SLS) printer at Formnext 2024 in Frankfurt, Germany (November 19-22). EOS created the...
3D Printing Webinar and Event Roundup: November 10, 2024
We’ve got another busy week ahead of webinars and events around the world! There are multiple open houses and conferences, advanced AM training, a 3D printer launch event, our own...
Dinsmore Gains Ability to 3D Print Functional Stents Thanks to Axtra3D
As essentially everyone familiar with additive manufacturing (AM) knows, one of the greatest advantages of 3D printing technologies is the potential to produce parts with complex geometries that are unachievable...