“Wind dispersion of seeds is a widespread evolutionary adaptation found in plants, which allows them to multiply in numbers and to colonize new geographical areas,” the researchers explain. “Seeds, fruits and other diaspores spores (dispersal units) are equipped with appendages that help generate a lift force to counteract gravity as they are passively transported with the wind. Seeds with a low terminal descent velocity increase their flight time and the opportunity to be transported horizontally by the wind before reaching the ground. Many plant species are today unfortunately under severe stress and on the verge of becoming extinct due to climate change, timber extraction and agricultural development. The terminal velocity of the seed is a necessary prerequisite for accurate predictions from dispersion models, which can help predict their wind dispersion and influence policy-makers in their conservation and reforestation plans.”
The researchers describe several shapes of windborne seeds and fruits, including single- and multi-winged seeds, many of which are autorotating or autogyrating – think of the whirly seeds that drop from maple trees. In order to better understand the relationship between wing geometry and terminal descent velocity, the researchers 3D printed several models of winged seeds and fruits using a Formlabs Form 2 3D printer. A series of experiments was performed in a large water tank; the 3D printed seeds were immeresed in the water and then released to drift to the bottom. A camera recorded the motion of the seeds from the side of the tank, and images were extracted from the video to track the seed’s lowest point and the wing tips.
The researchers also performed measurements from the top and bottom of the tank, which were found to be in excellent agreement with the measurements taken from the sides. They then developed formulas that showed the optimum shapes for the seeds’ wings.
“Our results point to geometrical shapes of the wings of multi-winged seeds, fruits and diaspores, which provide them with an optimal dispersion potential i.e. maximal flight time, and compares favourably with wing geometries found in the wild,” the researchers conclude. “For whirling fruits to maximize the time they are airborne, their appendages that function as wings must not curve too much or too little.”
Authors of the paper include Richard A. Fauli, Jean Rabault and Andreas Carlson.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3DPOD Episode 138: Point-of-Care Medical Device 3D Printing with Dr. Steven Kurtz, Drexel University
In this episode of the 3DPOD, we speak to Dr. Steven Kurtz, director of the Implant Research Center at Drexel University’s School of Biomedical Engineering, Science, and Health Systems and...
3DPOD Episode 137: From RepRap to Government Supplier, MatterHackers CEO Lars Brubaker
Coming from the world of gaming, Lars Brubaker started MatterHackers to take part in the 3D printing revolution. Due to his background, he has good war stories: trying to find...
3DPOD Episode 136: Exploring the Boundaries of 3D Printing with Fergal Coulter, ETH Zurich
Fergal Coulter, a postdoctoral research fellow at ETH Zurich, is one of the most interesting scientists working in 3D printing today. His work spans from 3D printing on balloon shapes...
3DPOD Episode 135: Performance 3D Printing Services with Bob Markley, ADDMAN Group
Bob Markley, Executive Vice President at additive manufacturing provider ADDMAN Group, has had an eventful journey in 3D printing. In this episode of the 3DPOD, he discusses the route to...
Print Services
Upload your 3D Models and get them printed quickly and efficiently.