3d.fab’s BioAssemblyBot Wants to 3D Print Skin onto People

Share this Article

3D bioprinting continues to diversify as more and more companies and research organizations join the field, each bringing their own take on the technology to the table. French collaborative platform 3d.fab has an intriguing approach towards bioprinting that involves a freeform robot capable of directly printing on a part of the body. In the video below, the BioAssemblyBot prints what appears to be a bandage directly on an arm:

The “bandage” is actually a bio-ink made from the skin cells of a patient. When applied to the patient’s skin, it forms an autograft that will, within a couple of weeks, create new skin. The BioAssemblyBot is capable of both additive and contour 3D printing, as well as pick and place and assembly thanks to its interchangeable tools. It’s only one of 3d.fab’s bioprinting technologies; the platform has a few other bioprinters in development as well, including another skin printer.

3d.fab works with other 3D printing technologies as well, including FDM and Polyjet, but everything is geared toward the pursuit of new developments in healthcare. Skin 3D printing is a major priority for the platform, as evidenced by the “Stresskin” project, one of several projects 3d.fab is pursuing. The approach of directly 3D printing on a body part is highly promising; while other organizations have worked on 3D printed skin, the samples generally are too fragile to be sutured, according to 3d.fab. The direct 3D printing concept would eliminate the need for sutures, creating a living bandage that would incorporate itself into the surrounding skin.

This is exciting news for victims of burns, illness or trauma who have lost significant portions of skin. Traditional skin grafts are painful and prone to infection or rejection, and the larger the wound, the more difficult it is to repair with a graft. 3D printing new skin cells directly onto a wound would reduce the risk of rejection, as it uses the patient’s own skin cells to grow new skin, and there would be no limit to the size of the “bandages” that could be applied, thanks to the free-form robot.

3d.fab’s other projects include a 3D printed device for faster and more cost-effective diagnoses of diseases. The goal of the project is to avoid further contributing to antibiotic resistance by thoroughly genetically analyzing pathogens. The platform is also working on improving silicone materials for 3D printed medical models and implants, as well as developing 3D printing technologies that can repair nasal cartilage loss.

Those are just a few of the initiatives 3d.fab is working on to advance 3D printing in the medical field. The platform collaborates with multiple partners and is open to further collaborations; if you are interested in working with 3d.fab, you can contact the organization here.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

3DPOD Episode 36: Fried Vancraen, CEO Materialise, Part II

3D Printed Milk Made Possible with Cold Extrusion Tech



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

ASTM Drives 3D Printing Standards via Investment into Eight Crucial Projects

Nonprofit organization ASTM International announced its third round of funding to support research that will help expedite standards in additive manufacturing (AM). The group creates and publishes technical standards for...

Featured

Researchers Create Bioink that Delivers Oxygen to 3D Printed Tissue Cells

Tissue engineering or regeneration is the process of improving upon or replacing biological tissues by combining cells and other materials with the optimal chemical and physiological conditions in order to build scaffolds...

New Multi Material 3D Printing Combines Different Metals and Ceramics into Single Part

The Fraunhofer family of German research institutes is endlessly inventing novel methods for manufacturing and supplementary technologies. The latest, this time from the Fraunhofer Institute for Ceramic Technologies and Systems...

3D Printed Food: Cooking with Lasers

As it stands, food 3D printers generally lack a key ingredient: the ability to cook the food they print. This isn’t entirely true, in that some devices like the PancakeBot...


Shop

View our broad assortment of in house and third party products.