Harris Corporation Tests Performance of 3D Printed Radio Frequency Circuits

Share this Article

Harris Corporation is a leader in tactical communications, geospatial systems and services, air traffic management, environmental solutions, avionics and electronic warfare, and space and intelligence. Recently, the company made an important discovery related to 3D printed electronics. In tests Harris conducted, it was found that the performance of 3D printed radio frequency circuits is comparable to that of circuits created using conventional manufacturing techniques.

The company utilized Nano Dimension’s DragonFly Pro 2020 electronic circuit 3D printer to conduct the tests. The circuits are used for conveying information such as data, video and voice across long distances, and Harris Corporation has, in recent years, been focused on improving their mobility and performance, as well as reducing development time and cost. Typically, the development of these circuits is a long, multi-step process.

“Harris looked at the applicability of 3D printing for developing RF systems, and then designed, simulated and tested the 3D printed RF amplifier and compared it with an amplifier fabricated using conventional manufacturing techniques,” said Arthur Paolella, PhD, Senior Scientist, Space and Intelligence Systems, Harris Corporation. “Our results showed similar RF performance between the 3D printed version and the baseline amplifier, clearly demonstrating the viability of 3D printed electronics for RF circuitry.”

Harris Corporation used the DragonFly 2020 Pro to 3D print a 101 x 38 mm thick circuit in 10 hours. Nano Dimensions’s silver nanoparticle conductive and dielectric inks were used to create the functional electric parts in a single print, and then the components were manually soldered to the PCB. Harris then used amplifier measurements to test for small signal gain, input return loss and output return loss. There was no noticeable difference in the input or output return loss over the frequency range from 10 MHz to 6 GHz. There was also no noticeable difference between the gain of the 3D printed circuit and the conventionally manufactured amplifier.

“The use of in-house 3D printed electronics to make antennas is a breakthrough, in terms of the time and cost of prototyping and proofs-of-concept,” said Amit Dror, CEO of Nano Dimension. “In addition, 3D printed electronics makes possible development of even smaller and lighter antennas that have rigid packaging integrated with flexible circuits, without the need for cables and connectors.”

Harris Corporation will present the full details of its experiments at the IEEE Radio and Wireless Symposium in January. The conference will be taking place in Orlando, Florida from January 20th to 23rd.

“The ability to manufacture RF systems in-house offers an exciting new means for rapid and affordable prototyping and volume manufacturing,” continued Paolella. “The results of the study provide substantial motivation to develop the technology further.”

In June of this year, Nano Dimension received an Israel Innovation Authority grant approval to finance a project involving the development of 3D printed electronic modules for space applications in collaboration with Harris Corporation. The project was designed to demonstrate that 3D printing double sided, multilayer circuits that distribute digital, power and RF signals could reduce size, weight, power and cost of space systems.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

3D Printing for Preppers: Investment Casting with PolyCast Filament

U.S. Energy Department Awards QuesTek $1.2M for Ultra-high Temperature 3D Printing Metals



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

NIST Awards $4M to Four Institutions for Metal 3D Printing Research

The U.S. Department of Commerce’s National Institute of Standards and Technology (NIST), a non-regulatory agency that promotes innovation and industrial competitiveness across the country, has awarded close to $4 million...

Xerox’s PARC to Use AlphaSTAR Simulation to 3D Print Turbomachinery Parts

California-based Palo Alto Research Center (PARC), a Xerox-owned research and development subsidiary company, has selected AlphaSTAR technology to create a virtual additive manufacturing (AM) approach that will save both time...

Air Force Awards Optomec $1M for High Volume 3D Printing Repair of Turbines

Optomec, a leading provider of additive manufacturing repair solutions, has won a $1 million contract from the U.S. Air Force to produce a system for the refurbishment of turbine engine...

3D Printed Turbine Combines 61 Parts into One

In July this year, Velo3D had qualified a new nickel-based alloy, Hastelloy X, due to its suitability in the additive manufacturing of power generation components such as gas turbines, using...


Shop

View our broad assortment of in house and third party products.