We rely on many different types of energy sources to get through the day for our mobile power needs, making batteries a big industry. Researchers are continuing to look for ways to refine them for more streamlined use, however.
In ‘Three-Dimensional Printing of a Complete Lithium Ion Battery with Fused Filament Fabrication,’ US researchers explore ways to customize these smaller sources of energy, plus building them into components. They point out that much work has been done previously with batteries, featuring everything from spray paintable batteries to stretchable batteries. In connection with 3D printing, researchers have experimented with fabricating ink-printed electrodes, as well as those fabricated with graphene. The goal is to remove the current limits caused by conventional shapes.
“Although there have been many recent advances in the creation of unconventional battery form factors, most prototype fabrication methods are limited to curved or flat surfaces,” states the team in their paper.
In exploring 3D printing with electronics, the team points out that this is an area making enormous strides, but the batteries are still always a separate quotient. The key is in printing everything at once—including all the following for the battery:
- Anode
- Cathode
- Separator
- Current collector
- Battery case
With the use of a low-cost FFF 3D printer and PLA as a material, the researchers measured the amount of swelling caused in the PLA by the nine solvents they used, along with the rising levels of conductive power, the amount of improvement and retention in PLA conductivity after lithium infusion, and they examined the effects of conductive carbon filler on performance.
“We hypothesized that PLA could be converted into an ionically conducting matrix by swelling the polymer with liquid electrolytes, thereby enabling the 3D printing of a lithium ion battery,” stated the researchers.
They were able to increase the conductivity of the material significantly and were able to fabricate batteries that withstood 100 cycles but showed a low capacity because of the large amounts of PLA required.
“Nevertheless, we used these new composite filaments to demonstrate that a full 3D printed LIB can be made in a single print with no assembly required, and that integrated 3D printed batteries can be used to power electronic devices such as 3D printed LCD sunglasses and an LED bangle,” state the researchers.
The team figured out how much conductive filler they could add to the PLA for creating successful battery power and found that performance increased as ‘the ratio of active to conductive material decreased.’
They created a 3D printed full cell with all components inside the coin cell:
“All printed anodes, cathodes, and separators were 16 mm in diameter and 150 μm thick, and were infused with 1 M LiClO4 in 50/50 vol EMC/PLA prior to assembly. Electrifi filament was used for 3D printing the current collectors, as it has the highest conductivity of all commercially available conductive filaments. Pure PLA was used for printing the separators.”
The team also printed two different wearable devices with built-in batteries—a pair of glasses, and a bracelet, demonstrating that it is feasible to create functional objects that run on stable power.
“These results should benefit those seeking to create energy storage materials and devices that can be 3D printed to create batteries in arbitrary shapes,” concluded researchers.
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: Applied Energy Materials]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing Market Reaches $3.45B in Q2 2024, Marking 8.4% Year-Over-Year Growth
The global 3D printing market continued its upward trajectory in the second quarter of 2024, totaling $3.45 billion—a year-over-year increase of 8.4%. Despite a slight sequential decline from $3.47 billion...
Unlocking the Future of Investment Casting: 3D Systems’ Patrick Dunne on QuickCast Air
On the floor of this year’s International Manufacturing Technology Show (IMTS), the theme for original equipment manufacturers (OEMs) in additive manufacturing (AM) seemed to be indirect production. What if, by...
3D Printing Unpeeled: Screen Printing Drugs, Repair Process for Marines & PCL Drug Release
Contract development and manufacturing organization (CDMO) Adare Pharma Solutions, is partnering with Laxxon Medical. The CDMO will use Screen-Printed Innovative Drug (SPID) to make oral dosage forms where they hope...
FDA Clears 3D Systems’ New Multi-Material Solution for 3D Printed Dentures
3D Systems (NYSE: DDD), the additive manufacturing (AM) industry pioneer based in South Carolina, has achieved Food and Drug Administration (FDA) clearance for its one-piece, multi-material denture printing solution. 3D...