X-ray microcomputed tomography (microCT) has become widely used as a way to analyze and test additively manufactured parts, particularly for dimensional measurement and porosity analysis. In a paper entitled “X-Ray Microcomputed Tomography in Additive Manufacturing: A Review of the Current Technology and Applications,” a group of researchers takes a look at the various ways microCT has been used in additive manufacturing, and the benefits and limitations of each.
“X-ray microCT works on the principle of irradiating a sample with a beam of X-rays, measuring the subsequent absorption X-ray image, and repeatedly acquiring such images as the sample rotates,” the researchers explain. “The X-ray absorption (so-called projection) images represent views of the sample from many angles, providing internal detail due to the penetration of X-rays. The acquired images are then used in a mathematical reconstruction process to generate a volumetric data set. This volume comprises voxels (volumetric pixels) with the brightness of each pixel related to the X-ray density of the material it represents (X-ray density depends on physical density and atomic mass).”
One application discussed is porosity and defect analysis. Porosity refers to voids in a 3D printed part, caused by any of a variety of factors. MicroCT can be used to detect porosity in smaller 3D printed parts, but it can miss small pores in larger parts. Another application is volumetric density measurement. Additively manufactured parts are still regularly subjected to the Archimedes test to measure their volumetric density, but their are several problems with this method, according to the researchers:
Air bubbles can attach to the surface especially due to the rough and irregular surface, resulting in larger volume measurement and hence lower measured density.
Channels or flaws connected to the surface can be filled with water, resulting in a smaller volume measurement and hence a higher measured density.
Inclusions can potentially increase the measured mass and hence measured density.
Major flaws such as layer defects, keyhole or gas pores take very little volume (e.g., <0.01%) and hence do not make much difference to the measured density but can still be very important if they are clustered or layered, or have some nonrandom distribution.
A material density is assumed, which can be incorrect for alloys with varying compositions.
CT measurement can overcome the problems with bubbles and porosity or channels; the accuracy of the measurement is limited only by scan resolution.
Dimensional measurement is another application; in fact, microCT is the only method capable of measuring the dimensions of complex parts with internal surfaces and lattices. MicroCT can also monitor changes in parts, particularly after deformation. Another application is the measurement of surface roughness or topography; traditional tools can only measure the outer surfaces of parts while microCT can measure complex or interior surfaces.
The researchers also point to simulations as an application that has not yet been widely explored for microCT and additive manufacturing.
“Unlike simulations based on design geometry of parts, the actual parts, including defects, surface imperfections, and build errors, can be simulated, providing a theoretically more accurate prediction of the properties of the part,” they state. “This can be useful for two reasons: first, the actual effect of a defect on the resulting mechanical properties can be assessed, assisting to make pass/fail decisions on the use of a part; and second, the effect of defects can be studied and correlated with various mechanical tests on the same parts.”
Multiscale CT and fast scanning are discussed as ways to detect porosity in single parts in a cost-effective way. Powder analysis is another application, one that can detect pores in metal powders. While most work using microCT in additive manufacturing has focused on single materials, it is also possible to analyze multiple materials in a part, though the quality of the images may vary depending on the materials being investigated.
The researches point out some limitations of microCT, such as part size.
“When a part is too big, penetration of X-rays becomes an issue requiring high scan voltages, beam filtration, and resulting loss of quality in the images,” they explain. “This can often result in lack of detection capability on small pores and can lead to some edges of the part being less or more bright than others in the CT data, making a good surface model impossible, or very time-consuming, to correct using image processing methods. This is especially true of denser metals, and objects larger than 100 mm. The data can still be used for viewing for major defects but any more advanced analysis becomes much more challenging.”
This can be overcome by using higher voltage systems or lots of beam filtration. Advantages of microCT include the fact that it does not require a great deal of time invested, though more time is required for critical parts.
You can learn more detail about the many applications of microCT in the paper itself.
Authors of the paper include Anton du Plessis, Igor Yadroitsev, Ina Yadroitsava, and Stephan G. Le Roux.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Scrona and Electroninks Collaborate to Advance Semiconductor Packaging Innovation
Inkjet developer Scrona and conductive ink maker Electroninks are collaborating to advance semiconductor packaging. Electroninks produces silver, platinum, gold, and copper inks, which are non-toxic metal-organic decomposition (MOD) inks known...
Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald
Like sands through the hourglass, so is the Q2 2024 earnings season. All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...
6K Lands $82M for Batteries and 3D Printing Powders in Series E Round
6K, the Massachusetts-based parent company of 6K Energy and 6K Additive, has secured $82 million in the opening of its Series E round, with the round planned to close out...
EOS Expands U.S. Production with EOS M 290 Metal 3D Printer
German powder bed fusion (PBF) leader EOS has unveiled plans to expand its assembly of the popular EOS M 290 metal 3D printer at its Pflugerville, Texas facility, near Austin....