Military Researchers Present Work on Recycled 3D Printing Material

RAPID

Share this Article

[Image: Nicole Zander, Army Research Laboratory]

The US military has made no secret of its enthusiasm for 3D printing, and lately has taken a creative, eco-friendly approach to the technology, looking into the recycling of water bottles for 3D printing material. Using water bottles, cardboard and other materials found on base for 3D printing could help reduce dependence on outside supply chains, improve operational readiness and offer greater safety. Normally, soldiers at remote bases or on the battlefield have to wait weeks for replacement parts, but by 3D printing them instead from materials that are readily at hand, they could eliminate that waiting time and become more self-sufficient.

The military researchers presented their work this week at the 256th National Meeting & Exposition of the American Chemical Society.

“Ideally, soldiers wouldn’t have to wait for the next supply truck to receive vital equipment,” said Nicole Zander, PhD. “Instead, they could basically go into the cafeteria, gather discarded water bottles, milk jugs, cardboard boxes and other recyclable items, then use those materials as feedstocks for 3D printers to make tools, parts and other gadgets.”

According to the US Government Accountability Office, the Department of Defense has an inventory of 5 million items distributed through eight supply chains in order to keep military personnel supplied with food, fuel, ammunition and spare parts. Few of these items are stockpiled at front-line locations, however, meaning that shortages can occur at critical times. Many of these front-line locations do have 3D printers, but they often have to wait an extended period of time for feedstock to be replenished.

Nicole Zander, ARL, demonstrates equipment for Capt. Anthony Molnar, U.S. Marine Corps. [Image: Jhi Scott/US Army]

Zander, along with Marine Corps Captain Anthony Molnar and colleagues at the US Army Research Laboratory, has been investigating recycling PET plastic, which is commonly found in water and soda bottles. They determined that filament produced from recycled PET was just as strong as commercially available 3D printer filament. The team used the recycled PET filament to 3D print a vehicle radio bracket, which normally has a long lead time. The process required about 10 water bottles and took about two hours to 3D print.

Originally, the researchers found that other types of plastic, like polypropylene (PP), which is found in yogurt and cottage cheese containers, and polystyrene (PS), used in plastic utensils, were not practical for 3D printing, but some tinkering made them more useful. They strengthened the PP by mixing it with cardboard, wood fibers and other cellulose waste materials, and they also blended PS with PP to make a strong and flexible filament.

The team used a process called solid-state shear pulverization to create composite PP/cellulose materials. Shredded plastic and paper, cardboard or wood flour was pulverized in a twin-screw extruder to generate a fine powder, which was then melted and processed into filament. The researchers tested the new composites and discovered that they had improved mechanical properties that could be used to 3D print strong objects.

Zander and her team are building a mobile recycling center that will allow trained soldiers to make 3D printing filaments out of plastic waste. They are also looking into ways to 3D print from plastic pellets instead of filament, which could allow for the printing of larger objects.

“We still have a lot to learn about how to best process these materials and what kinds of additives will improve their properties,” Zander said. “We’re just scratching the surface of what we can ultimately do with these discarded plastics.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

Navy’s Afloat Additive Manufacturing Program Creates Scalability Model for 3D Printing Industry

UW-Madison Engineers 3D Print RAM Devices in Zero Gravity with NASA Funding



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Financials: Protolabs’ Q1 3D Printing Revenue is Flat, Company Advances in Technology Push

Protolabs (NYSE: PRLB) has kicked off 2024 with a mild boost in revenue, revealing how the Minnesota-based company manages to adapt and thrive even in uncertain market conditions. While the...

NASA Backs Project for 3D Printing Space Sensors

NASA granted $300,000 to Florida State University (FSU) and Florida Agricultural and Mechanical University (FAMU) to pioneer a project using 3D printing to develop cutting-edge sensors capable of withstanding the...

Further Understanding of 3D Printing Design at ADDITIV Design World

ADDITIV is back once again! This time, the virtual platform for additive manufacturing will be holding the first-ever edition of ADDITIV Design World on May 23rd from 9:00 AM –...

Daring AM: Rocket Lab Shoots for the Stars, Astrobotic Wants to 3D Print on the Moon

Once again, space exploration teams up with the 3D printing industry, launching projects that could change how we explore space. Pioneering space manufacturer Rocket Lab (Nasdaq: RKLB) secured a $14.49...