Military Researchers Present Work on Recycled 3D Printing Material

Share this Article

[Image: Nicole Zander, Army Research Laboratory]

The US military has made no secret of its enthusiasm for 3D printing, and lately has taken a creative, eco-friendly approach to the technology, looking into the recycling of water bottles for 3D printing material. Using water bottles, cardboard and other materials found on base for 3D printing could help reduce dependence on outside supply chains, improve operational readiness and offer greater safety. Normally, soldiers at remote bases or on the battlefield have to wait weeks for replacement parts, but by 3D printing them instead from materials that are readily at hand, they could eliminate that waiting time and become more self-sufficient.

The military researchers presented their work this week at the 256th National Meeting & Exposition of the American Chemical Society.

“Ideally, soldiers wouldn’t have to wait for the next supply truck to receive vital equipment,” said Nicole Zander, PhD. “Instead, they could basically go into the cafeteria, gather discarded water bottles, milk jugs, cardboard boxes and other recyclable items, then use those materials as feedstocks for 3D printers to make tools, parts and other gadgets.”

According to the US Government Accountability Office, the Department of Defense has an inventory of 5 million items distributed through eight supply chains in order to keep military personnel supplied with food, fuel, ammunition and spare parts. Few of these items are stockpiled at front-line locations, however, meaning that shortages can occur at critical times. Many of these front-line locations do have 3D printers, but they often have to wait an extended period of time for feedstock to be replenished.

Nicole Zander, ARL, demonstrates equipment for Capt. Anthony Molnar, U.S. Marine Corps. [Image: Jhi Scott/US Army]

Zander, along with Marine Corps Captain Anthony Molnar and colleagues at the US Army Research Laboratory, has been investigating recycling PET plastic, which is commonly found in water and soda bottles. They determined that filament produced from recycled PET was just as strong as commercially available 3D printer filament. The team used the recycled PET filament to 3D print a vehicle radio bracket, which normally has a long lead time. The process required about 10 water bottles and took about two hours to 3D print.

Originally, the researchers found that other types of plastic, like polypropylene (PP), which is found in yogurt and cottage cheese containers, and polystyrene (PS), used in plastic utensils, were not practical for 3D printing, but some tinkering made them more useful. They strengthened the PP by mixing it with cardboard, wood fibers and other cellulose waste materials, and they also blended PS with PP to make a strong and flexible filament.

The team used a process called solid-state shear pulverization to create composite PP/cellulose materials. Shredded plastic and paper, cardboard or wood flour was pulverized in a twin-screw extruder to generate a fine powder, which was then melted and processed into filament. The researchers tested the new composites and discovered that they had improved mechanical properties that could be used to 3D print strong objects.

Zander and her team are building a mobile recycling center that will allow trained soldiers to make 3D printing filaments out of plastic waste. They are also looking into ways to 3D print from plastic pellets instead of filament, which could allow for the printing of larger objects.

“We still have a lot to learn about how to best process these materials and what kinds of additives will improve their properties,” Zander said. “We’re just scratching the surface of what we can ultimately do with these discarded plastics.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

3D Printing News Briefs: December 15, 2019

Korea: 3D Printed Protection Suits for Senior Citizens



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Surgeons Turning to 3D Printing & Pre-Surgical Planning for Jaw Surgeries in Korea

In ‘Comparison of time and cost between conventional surgical planning and virtual surgical planning in orthognathic surgery in Korea,’ authors Si-Yeon Park, Dae-Seok Hwang, Jae-Min Song, and Uk-Kuy Kim explore...

Interview with Korean Firm Graphy on Developing Cutting Edge Photopolymers for 3D Printing

Whereas FDM knowledge has been spread far and wide DLP and SLA learnings are often locked away behind closed doors. Only recently have we started to see many low-cost SLA...

Interview with 3DGuru’s Inbo Song on 3D Printing in Korea

We’re all familiar with Terry Wohlers and his eponymous report. What you may not know is that there is also a Korean Terry, Inbo Song. He provides companies with research,...

Interview with Lizy Shin of Carima on DLP 3D Printing for Manufacturing

Korean companies are few and far between in 3D printing. Given the advanced state of the Korean economy and their leadership in things such as chips, phones, and other electronics,...


Shop

View our broad assortment of in house and third party products.


Services & Data

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!