Argonne National Laboratory Researching Metal 3D Printing for Improved Military Applications

Share this Article

The military has been enthusiastically exploring 3D printing applications in a number of areas, from 3D printed drones to submarine hulls. But perhaps the most intriguing applications of 3D printing in the military are those that can be 3D printed right in the field. If servicemembers have the ability to 3D print what they need onsite, it reduces the need for them to carry heavy equipment, instead letting them create only what they need exactly when they need it.

Researchers at the Department of Energy’s Argonne National Laboratory are working to better understand the metal 3D printing process – specifically the laser powder bed fusion process – so that 3D printing can be used to a more advanced extent in the field. Physicist Tao Sun and colleagues are studying the technology using the intense synchrotron X-rays at the Advanced Photon Source, a DOE Office of Science User Facility at Argonne.

“The laser–metal interaction happens very quickly,” said Sun. “We captured the process at rates beyond a million frames a second using the high-speed X-ray instrument at the Advanced Photon Source. We can study the resulting movie frame by frame to examine how the material’s microstructure forms.”

“After printing, we examine the product’s resulting microstructure and defects,” added materials scientist Aaron Greco, Sun’s project co-leader. “We use a variety of techniques, including optical and electron microscopy and even tomography at the Advanced Photon Source, to validate the models. Our goal is to explore new possibilities. Industries are currently limited to a certain set of metal alloys. But what about new ones? If you understand the physical properties related to how to print new alloys, you can adopt these into the process and improve the speed and reliability of printing.”

Greco said that 3D printing has numerous benefits for the military, with applications that include aerospace vehicles, jet engines and lightweighting of any type of vehicle.

“This technology can be used in the field to create parts quickly and accurately while also eliminating transportation costs,” Greco said. “Our process enables users to control defect formation with the output being highly reproducible and certifiable. Using this experimental platform enables us to investigate new approaches to printing new and different materials. We’re able to predict and control the process, minimize defects and reduce the need for qualification testing. And we’re finding this benefit has application for any entity in the Department of Defense space.”

Research using titanium is allowing Greco’s team to study different types of materials and metal alloys, to design new alloys or improve the printability and manufacturability of alloys. They’re also creating new high-temperature, high-strength alloys that lead to improved outcomes.

“Our advances allow users to change the printing parameters to improve the material properties of what they’re printing, to create parts with enhanced hardness, strength or even corrosion resistance,” said Greco.

Keith Bradley, Director of National Security Programs at Argonne, believes that the defense industry will be interested in what Argonne is doing because the lab’s work can help to keep the United States safe and to prevent adversaries from using technology to cause harm.

“Argonne is one of several labs focused on preventing the proliferation of weapons of mass destruction, including dual-use technologies that can be repurposed from peaceful uses to military applications,” said Bradley. “It’s essential for the defense industry to continuously seek a competitive edge. For this reason, the industry is always tracking technological innovations to determine whether they can help advance their mission. Argonne’s broad expertise in materials science can help the military understand how to produce things that meet their specifications.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source/Images: Argonne National Laboratory]

 

Share this Article


Recent News

Ensuring Metal Additive Manufacturing Part Quality with Pre-Build Calibration

Argonne National Lab Tests Weather Stations with Low-Cost Sensors and 3D Printed Components



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

LLNL Researchers Bioprint Living Aneurysm and Watch it Heal Post-Op

Cerebral aneurysms, caused by the artery walls in the brain weakening, affect roughly one in every 50 people in the US, and are distinguished by a bulging blood vessel, which...

I-nteract Allows User to Design, Feel and 3D Print Objects in Mixed Reality

Due to their general ubiquity, it may not be readily apparent just how unintuitive computers are for the process of 3D computer aided design (CAD). A mouse or trackpad along...

Smallest 3D Printed Boat Yields Possibilities for Nanotechnology

We’ve seen some big 3D printed Benchy boats before, but I bet you’ve never seen one this small! A team of researchers from Leiden University in the Netherlands have published...

Researchers 3D Print Tunable Ferroelectric Metamaterials

Researchers from the University of Buffalo (UB) have developed a unique method for 3D printing ferroelectric materials, that is materials that can have their polarization switched through the use of...


Shop

View our broad assortment of in house and third party products.