AMS 2025

Cytosurge FluidFM Technology Can Now 3D Print Pure Metal Structures with Pinpoint Accuracy

AM Research Military

Share this Article

Nanotechnology startup Cytosurge, an ETH Zurich spin-off company, was founded nine years ago, and develops, manufactures, and distributes innovative, high-precision nanotechnology metal 3D printers based on its patented FluidFM technology, which stands for fluidic force microscopy and has many applications in life sciences and biophysics. Its award-winning microscale metal 3D printing system, the FluidFM µ3Dprinter, has been around for a couple of years now, and was further developed into a more consumer-friendly process last summer. The standalone system is able to 3D print pure metal objects, and has just received a pretty major design upgrade.

The FluidFM µ3Dprinter can already print metal structures ranging from 1 μm3 to 1,000,000 µm3, which is unheard of for other technologies. An electrochemical process, which works at room temperature, 3D prints a pure, high-quality metal, and can also fabricate overhanging structures with 90° angles without the use of support structures or post-processing.

But now, it features a new function that’s pretty unique – it can 3D print, with pinpoint (micrometer) accuracy, onto existing structures.

FluidFM technology combines force microscopy and microfluidics features by adding microscopic channels into force sensitive probes, or print tips. This results in the company’s FluidFM iontip, which makes the whole micro 3D printing process possible.

A very small volume of ion-containing liquid can be pumped through the iontip’s interior microscopic channel, then dispensed through a sub-micrometer aperture at the tip. The apertures, which can be as tiny as 300 nanometers, make it possible to achieve flow rates as small as a few femtoliters per second, which is a million times smaller than even the very best flow sensors can pick up on. In addition, the FluidFM iontips use their force-sensing capability to offer real-time process control during the print process. This makes it possible to 3D print complex, pure metal objects at the micrometer scale.

Cytosurge’s new pinpoint metal 3D printing is possible due to two state-of-the-art, high-resolution cameras that have been integrated directly into the FluidFM µ3Dprinter. These cameras make visualization of the finished structures possible, and also ensure automated loading of the FluidFM iontips, printer setup, calibration, and the computer-assisted alignment that makes it possible to print on pre-existing structures.

The top view camera images the surface or object about to be printed on, while the bottom view one mostly views internal system processes, such as controlling the FluidFM iontip’s automated gripping motions. Using the FluidFM µ3Dprinter’s live, high-resolution video, it’s possible to manually select the exact position of the surface or object that will be printed on, and then set it as the 3D printing process starting point. This allows the user to 3D print metallic objects on contact pads which are already pre-defined on the surface of micro-electromechanical-systems (MEMS) or an integrated circuit, like a microchip.

Printing on microchips is one of many applications made possible by the FluidFM µ3Dprinter.

The FluidFM μ3Dprinter’s unique new function of 3D printing structures, with exacting, pinpoint accuracy, directly onto surfaces and objects could potentially revolutionize micromanufacturing by combining traditional microfabrication techniques with 3D printing to create complex metal objects.

Discuss metal 3D printing and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images: Cytosurge]

 

Share this Article


Recent News

Will the UnitedHealth Assassination Lead to 3D Printed Suppressor Blowback?

Bechtel and Sintavia 3D Print Impeller for Nuclear Sub with Curtiss-Wright



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Printing Money Episode 23: Additive Manufacturing Deal Analysis with Alex Kingsbury

Episode 23 is here, and it’s chock-full. Alex Kingsbury, nLIGHT Market Development Manager and, not to mention, co-creator of the Printing Money podcast, re-joins Danny and the result is 60...

5 Stages to True Scale: Make Your Own Fleet of Metal 3D Printers

The additive manufacturing (AM) industry is now approaching true scale, where manufacturing is happening at volume. Critical parts, including millions of implants and thousands of rocket propulsion units, are being...

AML3D and Blue Forge Alliance Enter Manufacturing License Agreement for 3D Printed US Navy Parts

AML3D, the Australian original equipment manufacturer (OEM) of the ARCEMY wire arc additive manufacturing (WAAM) system, has announced a Manufacturing License Agreement (MLA) with Blue Forge Alliance (BFA), a neutral...

Featured

Accelerating the Domestic Industrial Base: ATDM Director Holley on Workforce Development for Advanced Manufacturing

At this point, it’s a familiar story: the US faces a critical lack of manufacturing workers in the next decade. Estimates are that, by 2032, the nation’s manufacturing labor pool...