EBM 3D Printing Process Used to Process a Steel Alloy with High Damage Tolerance

Share this Article

While the adoption and development of metal 3D printing continues to grow, so too does research into different types of metals that can be 3D printed, including steel. The aerospace and automotive industries in particular would have many applications for 3D printing components with high-performance steel. Now, for the first time, a research team at the University of Kassel in Germany has used additive manufacturing to process a steel alloy with extremely high damage tolerance, which will help in promoting safety and reliability of 3D printed metal parts.

These increased qualities will open up many fields of application, according to materials scientist Prof. Dr.-Ing. Thomas Niendorf, who has been a professor of metallic materials at the university since 2015. This project by his Emmy Noether research group was funded by the German Research Foundation (DFG).

“Applications in the aerospace and automotive industries, current drivers behind the technological development of 3D printing, will benefit considerably,” said Professor Niendorf in a translated quote. “3D metal printing will open up new areas on this basis.”

This isn’t the first time steel alloys have been used for 3D printing, but Professor Niendorf’s group combined the electron beam melting (EBM) process with a new starting material to create higher quality steel products. Together with fellow researchers from the TU Bergakademie Freiberg, his research group developed both the alloy and the process, and published their results in a paper, titled “Design of novel materials for additive manufacturing – Isotropic microstructure and high defect tolerance,” in the journal Scientific Reports. In addition to Professor Niendorf, co-authors include J. Günther, F. Brenn, M. Droste, M. Wendler, O. Volkova, and H. Biermann.

The abstract reads, “Electron Beam Melting (EBM) is a powder-bed additive manufacturing technology enabling the production of complex metallic parts with generally good mechanical properties. However, the performance of powder-bed based additively manufactured materials is governed by multiple factors that are difficult to control. Alloys that solidify in cubic crystal structures are usually affected by strong anisotropy due to the formation of columnar grains of preferred orientation. Moreover, processing induced defects and porosity detrimentally influence static and cyclic mechanical properties. The current study presents results on processing of a metastable austenitic CrMnNi steel by EBM. Due to multiple phase transformations induced by intrinsic heat-treatment in the layer-wise EBM process the material develops a fine-grained microstructure almost without a preferred crystallographic grain orientation. The deformation-induced phase transformation yields high damage tolerance and, thus, excellent mechanical properties less sensitive to process-induced inhomogeneities. Various scan strategies were applied to evaluate the width of an appropriate process window in terms of microstructure evolution, porosity and change of chemical composition.”

Prof. Dr. Thomas Niendorf in front of a 3D metal printer. [Image: Andreas Fischer]

The study addresses the challenges surrounding microstructural control and presents the team’s first results on EBM processing with their new material, which they developed using a TRIP (TRansformation Induced Plasticity) steel alloy. This type of alloy, thanks to its special deformation mechanisms, holds up very well, and the heat from the EBM process helps to avoid any unpredictable material properties, resulting in a significantly better inner material structure that protects against possible damage.

Arcam A2X

According to the paper, “In the present study it is demonstrated that the EBM processed CrMnNi steel exhibits excellent tensile properties even when large process-induced defects are present. Furthermore, it is revealed that the alloy undergoes phase transformation upon process inherent cooling and heating, respectively. This finally results in a fine-grained microstructure without pronounced texture.”

The specimens were 3D printed on an Arcam A2X, and the EBM process, coupled with the team’s new material, works well for small, complex components. While we know that titanium alloys are popular in the worldwide 3D metal printing market, the steel components that the researchers 3D printed don’t require any reworking, which makes them less expensive to manufacture.

Professor Niendorf, whose main area of research centers around the search for new processes and materials well-suited for 3D printing, believes that there is, according to the university, “tremendous potential for the German economy in 3D metal printing.”

“German manufacturers are leaders in the production of metal powders and the construction of 3D laser melting equipment,” said Professor Niendorf.

SEM micrographs of fracture surfaces: (a) as-built specimen after tensile testing; (b,c and d) showing magnified details of defects marked with white dashed rectangles in (a); (e) heat-treated specimen after tensile testing; (f) and (g) showing magnified views of defects marked with white dashed rectangles in (e).

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source/Images: University of Kassel]

 

Facebook Comments

Share this Article


Related Articles

SmarTech Releases Manager’s Guides to Oil and Gas & Compact Industrial Metal 3D Printers

Collaborative Research Team Develops Density-Graded Structure for Extrusion 3D Printing of Functionally Graded Materials



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs: June 18, 2019

We’re starting with business in today’s 3D Printing News Briefs: Canadian additive and space manufacturing companies are partnering up for a two-year project, while Thor3D and Polyga have announced a...

3D Printed Flax Fiber Biocomposites Show Potential in Structural Applications

In ‘3D printing of continuous flax fiber reinforced biocomposites for structural applications,’ authors A Le Duigou, A. Barbé, E. Guillou, and M. Castro examine recent, increased interest in using natural...

Lamar University Researchers Develop 3D Printed Self-Healing Material to Cut Back on Waste

Material sample with a healed break [Image: Dr. Keivan Davami] A team of researchers from Lamar University in Texas, led by assistant professor Dr. Keivan Davami, recently developed a self-healing...

RAPID 2019: 3D Printed Artwork, Booth Visits, and Press Conferences

Recently, I, along with thousands of others, traveled to Detroit, Michigan – which boasts the highest concentration of engineering talent in the entire US – to attend this year’s RAPID +...


Training


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!