3D Printing Technology Offers New Zealand Researchers the Design Freedom to Develop Better Heat Exchangers
Two academics with the University of Canterbury (UC) in New Zealand recently used 3D printing technology to develop potentially game-changing heat exchangers. Dr. Tim Huber and Professor Conan Fee participated in the university’s eighth annual Tech Jumpstart competition, which gives UC researchers the chance to commercialize their projects and ideas.
Over a period of six months, the competition awards a total of $20,000, funded by various technology incubators and the public research organization network KiwiNet, to five UC projects, for the purposes of commercialization processes like strategic planning, market validation, and financial analysis.
“The Tech Jumpstart competition takes innovative research ideas to an exciting new level of exploring commercial opportunity,” said UC Deputy Vice-Chancellor Tumu Tuarua Ian Wright. “The commercial potential of these ideas makes UC more attractive to investor groups, furthers intellectual capability and gains more leverage with government, private research and consulting opportunities.”
The Tech Jumpstart award will allow Fee and Dr. Huber to hire research assistants this summer, as well as use a specialized metal 3D printer in order to manufacture their heat exchangers out of materials like titanium or stainless steel. Because plastic has poor thermal conductivity capabilities, it’s not a good material choice for 3D printed heat exchangers, which is why metal materials are typically used.
By utilizing 3D printing technology to more efficiently manufacture their original class of heat exchangers, the project could open up new possibilities in multiple fields, such as laptop processors, air conditioners, and motorsports, where, according to the university, “cooling can take place faster in radical new shapes while providing increasingly important reductions in weight.”
Professor Fee, who is the Head of UC’s new School of Product Design, said that the project is a perfect example of a “cross-disciplinary research group,” as it also involved chemistry, chemical and mechanical engineering, mathematics, and physics.
“This will facilitate the development of some promising technology that is expected to improve the efficiency of devices meant for heating or cooling. That includes smaller and lighter devices for electronics, giving racing cars a competitive advantage, provide for lighter aerospace vehicles, and smaller, more attractive heat pumps in homes amongst other things,” said Professor Fee. “The growth of 3D printing for new applications is exponential and it is stimulating a huge set of opportunities for new designs that were not previously possible. Our 3D-printed porous heat exchangers are an example of something that cannot be made by conventional technologies but is now possible, expanding our thinking and potentially growing innovation in New Zealand.”
Using 3D printing to design the heat exchangers means that they no longer need to be made in the traditional rectangular and cylindrical shapes, but rather can be made to fit within unusual, constrained shapes, or modeled specifically for aerodynamic purposes.
3D printing will also help the researchers save on both weight and space for the heat exchangers, which opens up the possibility for innovations such as faster, more fuel-efficient vehicles and smaller electronic devices, in addition to preventing laptops from overheating on a person’s lap and leaving smaller footprints for home cooling and heating. Because of the weight and space reductions, manufacturing costs are also reduced.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.
[Source/Images: University of Canterbury]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing News Briefs, September 7, 2024: Ceramics & e-Beam, 3D Circuits, & More
In 3D Printing News Briefs, Sandia acquired a second LCM 3D printer from Lithoz, and Freemelt successfully installed its e-MELT-iD at WEAREAM. Bright Laser Technologies now offers high-precision metal LPBF...
The Impact of IMTS on Big 3D Printing
From September 9-14, IMTS 2024 – The International Manufacturing Technology Show takes place at McCormick Place in Chicago, and celebrates the 10th anniversary of an audacious team, including Oak Ridge...
Formlabs Adds Materials, Post-Processing Tools to SLA & SLS 3D Printing Ecosystem
3D printing double unicorn Formlabs is making it easier, and more efficient, for users to print final, consumer-ready parts by streamlining post-processing, and opening up new workflows. Today, the company...
Stratasys Releases Origin Two 3D Printer and Origin Cure Post-Processing System
Stratasys (Nasdaq: SSYS), the American/Israeli additive manufacturing (AM) pioneer, has released the Origin Two digital light processing (DLP) 3D printer, a follow-up to the Origin One that the company released...