LLNL Uses 3D Printing to Predict and Test Failure Modes in Miniature Lattice Structures

IMTS

Share this Article

There’s a good reason why you see so many 3D printed Eiffel Towers. It’s not just because the building is beautiful and iconic, though that’s certainly part of it. It’s also a great showcase for a 3D printer’s capabilities, particularly in terms of resolution – which is why so many 3D printer manufacturers feature printed models of the French monument so prominently in their advertising. The Eiffel Tower is possibly the most famous lattice structure in the world, and lattice structures are a prime example of what 3D printing can do that other forms of manufacturing cannot.

Lattice structures have been used in construction for hundreds of years. They’re lightweight and low-density yet extremely strong and stiff, and 3D printing has proven itself to be capable of taking the typically large-scale structures down to a minuscule scale. Researchers at Lawrence Livermore National Laboratory (LLNL) have been working with 3D printed lattices a great deal, testing them for strength, creating super-strong microscopic structures, and even translating the structures into graphene aerogels. Now LLNL has published two new research papers that delve further into the miniaturization of lattice structures.

The big question for Mark Messner and Holly Carlton was whether the models used to predict failure behavior in large-scale lattice structure would apply to smaller-scale lattices. Messner, who is now with Argonne National Laboratory, published his work in an article entitled “Optimal lattice-structured materials,” and used a new equivalent continuum model to predict failure behavior in truss structures. When applied to typical larger-scale structures, the model predicts either a yield-dominated or a buckling-dominated failure mode at critical relative density. That critical relative density, however, Messner argues, depends on the manufacturing process.

“Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies,” Messner states. “The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure.

This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.”

Carlton, whose work is documented in a paper entitled “Mapping local deformation behavior in single cell metal lattice structures,” conducted quasi-static compression tests paired with in situ tomography at Lawrence Berkeley National Laboratory’s Advanced Light Source. The tests, which were performed on miniature 3D printed structures, showed real-time deformation in unit cell lattice structures, particularly showing a transition in failure mode from catastrophic buckling to yielding at a low relative density (between 10 to 20 percent of bulk density), validating Messner’s predictions.

“Two types of structures, known to show different stress-strain responses, were evaluated using synchrotron radiation micro-tomography while performing in-situ uniaxial compression tests to capture the local micro-strain deformation,” Carlton’s paper explains. “These structures included the octet-truss, a stretch-dominated lattice, and the rhombic-dodecahedron, a bend-dominated lattice. The tomographic analysis showed that the stretch- and bend-dominated lattices exhibit different failure mechanisms and that the defects built into the structure cause a heterogeneous localized deformation response.”

Additional authors on Carlton’s paper include Messner, Jonathan Lind, Nickolai A. Volkoff-Shoemaker, Harold S. Barnard, Nathan R. Barton, and Mukul Kumar.

These studies are the first in which theoretical models were used to predict failure in miniaturized lattice structures and then tested to see if the predictions held up. The structures may have been small, but the results aren’t; they could have large implications for how other structures are designed and fabricated in the future. Discuss in the LLNL forum at 3DPB.com.

 

Share this Article


Recent News

Interview: Rethinking 3D Printing for High-Volume Production with Exentis

3D Printing Financials: Prodways’ Q1 2024 Revenue Drop and Accounting Overhaul



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Financials: Fathom Struggles in Financial Quicksand During Critical Transition

Facing a year of key transitions and financial pressures, Fathom (Nasdaq: FTHM) has filed its annual report for 2023 with the U.S. Securities and Exchange Commission (SEC). The document outlines...

Latest Earnings Overview for Australian 3D Printing Firms Titomic and AML3D

Australian 3D printing manufacturing firms Titomic (ASX: TTT) and AML3D (ASX: AL3) reported their financial results for the period from July to December 2023, marking the first half of their...

3D Printing Webinar and Event Roundup: April 7, 2024

Webinars and events in the 3D printing industry are picking back up this week! Sea-Air-Space is coming to Maryland, and SAE International is sponsoring a 3D Systems webinar about 3D...

3D Printing Financials: Unpacking Farsoon and BLT’s 2023 Performance

In the Chinese 3D printing industry, two companies, Farsoon (SHA: 688433) and Bright Laser Technologies, or BLT (SHA: 688333), have recently unveiled their full-year earnings for 2023. Farsoon reported increases...