AMS 2025

3D Printed Drones Impress Evonik and Continue to Prove Real-World Utility

RAPID

Share this Article

Chemical company Evonik, like many other chemical companies, saw the opportunity there is in 3D printing and began manufacturing materials for the technology along with its other products a while ago, including a partnership with HP to contribute to its Open Platform materials development program. Evonik’s work with 3D printing materials has taken it into the realm of biocompatible implants, potentially leading to more effective treatment for people with serious bone injuries or diseases. The company’s 3D printing materials can be used for a lot more, however, as they’re highly versatile.

Recently Evonik began looking into drones as part of its plant maintenance program. The company 3D printed a multicopter, or a drone with four or more rotors, and flew it over its Wesseling site. The drone transmitted live images of the water tower and pipe bridges to a monitor on the control unit, demonstrating its efficacy in providing support for maintenance work.

“Overall, the experiment showed that drones are ideally suited as support for projects such as maintenance work,” Evonik said.

The drone was 3D printed from Evonik’s VESTOSINT powder, a family of polyamide 12-based materials with strong mechanical properties, good chemical resistance and high fusion point that make them well-suited for sintering processes.

“Printed from powder: the parts of the drone painted white and red are made of polyamide 12 powder from Evonik and were manufactured using a 3D printing process,” the company describes its creation.

[Image: Evonik]

Drones, overall, seem to go well with 3D printing. The technology is a quick way to create a custom drone, and to do so cheaply. That’s good news for anyone who, like Evonik, is considering using unmanned aerial vehicles in large-scale maintenance operations, or for many, many other purposes. One of the most important functions of drones is for disaster relief purposes, and in some proposed cases, drones many not only be 3D printed but might be capable of 3D printing, creating emergency housing in areas where responders can’t reach.

Drones also lend themselves well to research purposes, as in the case of an organization using drones to study whales in a non-invasive way. In this case, a drone flies over a whale as it surfaces and gathers the water expelled from the whale’s blowhole; this allows scientists to obtain the same information they would typically receive from shooting the whale with a sampling dart, which can be a traumatic experience for the whale. This brings up many possibilities for the use of drones to study wildlife without having to get too close to them.

Bat Bot [Image: Ramezani, Chung, Hutchinson, Sci. Robot. 2]

Speaking of wildlife, the partially 3D printed Bat Bot is a marvel of engineering that two universities created – a drone inspired by the natural characteristics of bats. The drone was designed as an alternative to traditional quadcopters, to be used in urban areas or other cramped environments. Bat Bot was designed to be used for everything from search and rescue to personal assistance.

The military uses of drones can’t be ignored, either – they’ve already become critical for surveillance and supply delivery, and soldiers are beginning to 3D print their own with more frequency. Like in disaster relief, drones in the military can be used to go into areas that aren’t accessible or safe for humans.

[Image: Flirtey]

There’s been a lot of talk about drones and their place in the future, and it’s widely agreed-upon that the place of drones is going to be a significant one. Projected futures imagine drones everywhere, as prevalent as cars. Already we’re seeing drones dropping by people’s houses to drop off a pizza or some doughnuts.

Is 3D printing speeding adoption of drones across industries and across the world? Almost certainly. Again, 3D printing means drones are easier, faster and cheaper to make – and because they’re so easy and inexpensive to create, bigger risks can be taken with their design and their usage, meaning more creative applications and the potential for that heavily drone-populated future to arrive sooner than anticipated.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

Berlin-Brandenburg: The Capital of Additive Manufacturing

Overcoming Barriers in Additive Manufacturing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

New Titomic Advisory Board Targets Cold Spray 3D Printing at Missiles and AUKUS Priorities

If you’re in additive manufacturing (AM) and you don’t have a retired military leader as an advisor, now is the time to get one. As discussed in a recent PRO...

Featured

Formlabs Form 4L 3D Printer Review: Scaling Success with Speed and Precision

Disclosure: The Form 4L was provided to me by Formlabs free of charge for the purpose of this review. I have not received any other compensation. All opinions expressed are...

Sponsored

From Prototype to Production: The Comprehensive Journey of Additive Manufacturing

I have been professionally immersed in the world of 3D printing for the past 19 years, witnessing its evolution from massive, lab-based industrial machines to today’s desktop printers that excel...

3D Printing Webinar and Event Roundup: January 12, 2025

In this week’s 3D Printing Webinar and Event roundup, Stratasys has started offering its advanced training again, Ricoh is holding its second 3D Print Connect event, and more. Read on...