Biocompatible 3D Printing Ink Developed with Living Bacteria May See Biotechnology and Medical Use

IMTS

Share this Article

3D printing technology is pretty amazing, but it’s one thing to print something out of material like plastic or metal, and quite another to 3D print living matter. The science behind successfully 3D printing bacteria is challenging, but the researchers at ETH Zurich have used living bacteria to develop a biocompatible 3D printing ink. Their new 3D printing platform uses the living ink, which contains real bacteria, to 3D print mini biochemical factories – biological materials that can produce high-purity biomedical cellulose or break down toxic substances.

The ETH logo, 3D printed with bacterial printing ink.

The research team, led by Professor André R. Studart, Head of the Laboratory for Complex Materials at ETH Zurich, recently published a paper on their innovative materials work, titled “3D printing of bacteria into functional complex materials,” in the journal Science Advances; co-authors include Manuel Schaffner, Patrick A. Rühs, Fergal Coulter, Samuel Kilcher, and Studart.

According to the abstract, “We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of ‘living materials’ capable of degrading pollutants and of producing medically relevant bacterial cellulose.”

Science animated. [Illustration: Bara Krautz]

The team dubbed their new 3D printing material Flink, or ‘functional living ink,’ and it can be used for a wide variety of applications in the biotechnology and medical fields, such as studying the formation of biofilm or degradation processes, developing 3D printed bacteria filters to deploy in oil spills, and using a 3D printed sensor containing the bacteria to detect toxins in drinking water.

“Most people only associate bacteria with diseases, but we actually couldn’t survive without bacteria,” Rühs said.

“Printing using bacteria-containing hydrogels has enormous potential, as there is such a wide range of useful bacteria out there.”

Rod-shaped bacteria produce cellulose, recognizable as a thread-like structures.

The researchers used both Pseudomonas putida and Acetobacter xylinumin bacteria in their work: the former can break down the toxic chemical phenol, produced in the chemical industry, and the latter secretes stable, high-purity nanocellulose, which retains moisture and relieves pain, making it a possible way to treat burns.

In order for the bacteria to live, its culture medium is mixed directly into the ink, which is composed of a structure-providing biocompatible hydrogel. The hydrogel, which is the basis of the Flink, is made of long-chain sugar molecules, pyrogenic silica, and hyaluronic acid; then, the team can add different bacteria with various desirable properties in order to 3D print structures on a 3DDiscovery bioprinter. They can use up to four inks with different bacteria species and concentrations to print products with varying properties in one job.

Bacteria-containing ink can also be printed on a complex three-dimensional surface like this doll’s head.

One issue the researchers ran into was the viscosity of the Flink. The bacteria-containing hydrogel needed to be fluid enough to make it through the pressure nozzle, and the stiffer the ink’s consistency, the more difficult it is to flow: a 3D printed object has to be able to support the weight of its own layers, as objects that are too fluid can collapse under their own weight. However, if the hydrogel is too stiff, then the Acetobacter has a lower cellulose secretion rate.

Schaffner explained, “The ink must be as viscous as toothpaste and have the consistency of Nivea hand cream.”

The other issue the team needs to overcome is difficult scalability and slow printing time – at the moment, it takes the Acetobacter bacteria several days to produce cellulose. They have also not studied the lifespan of their 3D printed minifactories.

Rühs said, “As bacteria require very little in the way of resources, we assume they can survive in printed structures for a very long time.”

Luckily, they don’t have to worry about the safety of their ink – the researchers only use beneficial, harmless bacteria. The next step is to work on accelerating the 3D printing process so it can be used for biomedical applications.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source/Images: ETH Zurich]

 

Share this Article


Recent News

Will There Be a Desktop Manufacturing Revolution outside of 3D Printing?

Know Your Würth: CEO AJ Strandquist on How Würth Additive Can Change 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Pressing Refresh: What CEO Brad Kreger and Velo3D Have Learned About Running a 3D Printing Company

To whatever extent a business is successful thanks to specialization, businesses will nonetheless always be holistic entities. A company isn’t a bunch of compartments that all happen to share the...

Würth Additive Launches Digital Inventory Services Platform Driven by 3D Printing

Last week, at the Additive Manufacturing Users’ Group (AMUG) Conference in Chicago (March 10-14), Würth Additive Group (WAG) launched its new inventory management platform, Digital Inventory Services (DIS). WAG is...

Featured

Hypersonic Heats Up: CEO Joe Laurienti on the Success of Ursa Major’s 3D Printed Engine

“It’s only been about 24 hours now, so I’m still digesting it,” Joe Laurienti said. But even via Zoom, it was easy to notice that the CEO was satisfied. The...

Featured

3D Printing’s Next Generation of Leadership: A Conversation with Additive Minds’ Dr. Gregory Hayes

It’s easy to forget sometimes that social media isn’t reality. So, at the end of 2023, when a burst of doom and gloom started to spread across the Western world’s...