Carbon Releases Latest Version of 3D Printing Software, Featuring Updated Support and Simulation Features

Share this Article

Silicon Valley-based 3D manufacturing company Carbon is as well-known for its proprietary, lightning-fast CLIP 3D printing technology, enabled by breakthrough Digital Light Synthesis (DLS) technology, and M1 3D printer as it is for its increasing efforts toward scaling up 3D printing technologies for production. The company has been heavily focusing on production-scale 3D printing, and this spring introduced its end-to-end AM SpeedCell solution, which includes the new M2 3D printer. Now, Carbon has released the latest version of its next-gen 3D printing software, which includes new tools backed by the powerful, cloud-based computational technique of finite element analysis (FEA) that can simulate the forces of its DLS technology.

“Carbon is often recognized for its innovations in hardware and materials science, but our software is what enables all of these pieces to work together seamlessly. Carbon’s software creates a digital canvas on which every cubic millimeter of a part can be designed, controlled, and optimized before its printed,” said Carbon’s Director of Software Roy Goldman. “We’ve built this software from the ground up, providing our customers with a comprehensive view of the design process that helps ensure a part performs as desired, and enables fast printing and easy post-processing. These new FEA-backed automated support tools are the first of their kind and take our software to a whole new level.”

Representative heat oracle simulation showing hot-spots at multiple part cross-sections.

Carbon’s software already combines the company’s materials and hardware into one easy-to-use, digital-first manufacturing system, but with these new enhancements, the newest version will be able to expand its tools to design, engineer, and print even better polymeric parts.

Customers will be able to use the software’s variety of tools to ensure successful print jobs the first time out, reduce post-processing, and, as Carbon says, “optimize supports for material usage.”

Speaking of supports, Carbon’s newest software includes a cloud-powered, advanced auto support feature, which analyzes parts so users can determine where they may need additional support so they can print parts correctly. In addition, the software also comes with new fence supports, which support edges for precise printing; these types of support also reduce the amount of material used, and help to 3D print parts that require only nominal support artifacts.

The software also allows you to view, edit, and add supports manually.

Another new feature is secure, fast simulations, thanks to Carbon’s cloud-based computing architecture. It takes a lot of computing power to make a simulation, which can really slow down the process, but Carbon takes simulation from days to just hours. Designers can now simulate stress build-up in order to predict potential warping or cracking challenges that could occur during 3D printing; in addition, the heat generated across the build plate during a print can also be simulated, so users can evaluate potential hot-spots and fine-tune the print speed to compensate for heat-induced shrinkage.

“Carbon’s core technology is enabling new business models that inherently need new software. Printing parts on demand, re-purposing a fleet of machines to print a range of parts daily or even hourly, local production for local markets — these are all challenges big manufacturing and ERP companies have talked about for years, but progress has largely been stagnant because the underlying technology hasn’t existed,” said Carbon CEO and Co-Founder Dr. Joseph DeSimone.

“Carbon is changing the game by solving each of these problems head on, moving beyond prototyping to real-world production at scale.”

Some of the other all-encompassing features of the software include:

  • Algorithmic design: designers can create internal lattice structures, and also add both functional and aesthetic textures.
  • Fleet management: Carbon’s software platform supports SpeedCell operations, and 3D printer fleet management, using features like real-time dashboards.
  • Printer profiles: multiple profiles, optimized for repeatability and production speed, are included with Carbon’s 3D printers.
  • Provenance: all parts 3D printed on Carbon’s machines are digitally traceable, including a unique ID that can be embossed or engraved on the part and identifies its digital historical record.
  • Texture: Carbon 3D printers can add textures to final production parts without any expensive post-processing methods.

Software simulation shows designers high deformation zones (in red) on a hollow production part.

Carbon’s software-driven intelligence, which has built-in chemistry and physics models, helps customers with rapid iterations due to the printing process chemical reaction that’s controlled by the software. Carbon is able to integrate all offerings and unit operations with its cloud connectivity, and hardware is optimized with new release updates every six weeks, so customers know that their 3D printers are performing at peak levels; this also makes it easier to introduce new resins in a streamlined manner.

“Carbon’s software is the glue that helps us orchestrate complex industrial designs into final production parts using our resins and printers,” Carbon wrote in an article this summer.

“From design efficacy and simulations, to mass production flow –  our software is architected for at scale manufacturing and supports supply-chains for the digital manufacturing era. This is a vision Carbon shares with a lot of Industry 4.0² proponents. To that outcome, we are creating the building blocks to realize that vision.”

What do you think about Carbon’s latest software version? Let us know at 3DPrintBoard.com, or leave a Facebook comment below.

[Images: Carbon]

 

Share this Article


Recent News

Zhejiang University Sheds Light on APVC with 3D Printed Surgical Models

State of the Art: Carbon Fiber 3D Printing, Part Five



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

State of the Art: Carbon Fiber 3D Printing, Part Four

In parts one, two and three of this series, we’ve discussed the variety of technological developments taking place in the 3D printing of composites but have not yet covered the...

Parameter Optimization for 3D Printing of Continuous Carbon Fiber/Epoxy Composites

In the recently published ‘A Sensitivity Analysis-Based Parameter Optimization Framework for 3D Printing of Continuous Carbon Fiber/Epoxy Composites,’ researchers continue to explore the world of enhanced materials for fabrication of...

State of the Art: Carbon Fiber 3D Printing, Part Two

In the first part of our series on carbon fiber 3D printing, we really only just got started by providing a background on the material, some of its properties, and...

State of the Art: Carbon Fiber 3D Printing, Part Three

So far, we’ve covered some of the key aspects of carbon fiber manufacturing and how continuous carbon fiber compares to chopped in early modes of carbon fiber 3D printing. However,...


Shop

View our broad assortment of in house and third party products.


Services & Data

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!