If you have been following 3D printing even for just a short amount of time, then you are probably aware that while one surprising innovation after another seems to pop up from every corner of the world, the technology has also been connected with so many others such as robotics, virtual reality, biotechnology, and far more. Now, scientists are mixing a versatile material with 3D printing filament to achieve a novel result in the form of sensor technology that has the potential to be groundbreaking.
In seeking to embed metal-organic frameworks (MOFs) in one, single, usable material (rather than multiple ones, as seemed to be their only initial choice), a team of scientists working together from both the National Institute of Standards and Technology (NIST) and American University have been working on a project that could prove to be useful in the world of sensors.

This view of the molecular structure of the MOF shows the triangular channels that run through the material. The walls of these channels trap the lower-octane components of gas while allowing the higher-octane molecules to pass through, potentially providing a more efficient and cost effective way to refine high-octane gasoline. [Image: Science/AAAS]
The findings were reported recently in their paper “Toward 3D printed hydrogen storage materials made with ABS-MOF composites,” published in Polymers for Advanced Technologies, where the scientists explained more about the mixture. They view the results as having great potential, but in need of further refinement. Currently, the mix holds over 50 times more than plastic can by itself, proving that the MOFs are working from within.
With this new process, the researchers realized that the MOFs may proof extremely helpful in the future in a variety of different industrial applications—especially since they are so buoyant within the mix, not just ending up resting heavily on the bottom.
“The auto industry is still looking for an inexpensive, lightweight way to store fuel in hydrogen-powered cars,” said NIST sensor scientist Zeeshan Ahmed. “We’re hoping that MOFs in plastic might form the basis of the fuel tank.”
The team presses on with improving the process, and a second paper is already being written as they study how MOFs can take in nitrogen and hydrogen.
“The goal is to find a storage method that can hold 4.5 percent hydrogen by weight, and we’ve got a bit less than one percent now,” said Ahmed. “But from a materials perspective, we don’t need to make that dramatic an improvement to reach the goal. So we see the glass—or the plastic—as half full already.”
What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.
[Source / Images: NIST]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and recieve information and offers from thrid party vendors.
You May Also Like
The Digital Textile Tech Behind Kornit’s Sustainable Fashion
I recently traveled to Israel to attend Kornit Fashion Week Tel Aviv 2022 and see Kornit Digital (NASDAQ: KRNT) introduce its Atlas MAX Poly and Apollo solutions for digital, sustainable fashion. The...
Fashion 3D Printing Targeted by Stratasys with New Textile 3D Printer
Steadily, Stratasys (NASDAQ: SSYS) has been releasing industry-specific versions of its PolyJet technology: one targeted at dental, one at medical, another for engineering, and so on. Now, it’s taking on...
Kornit Showcases the Future of Sustainable Digital Fashion, 3D and Otherwise
Fashion is one of the world’s most polluted industries, as Ronen Samuel, CEO of Kornit Digital (NASDAQ: KRNT), said at Kornit Fashion Week Tel Aviv 2022. I was lucky enough...
Color 3D Printing Firm Rize3D Shuts Down—Will it Rize Again?
Rize3D has gone out of business. However, if you have a Rize system, you can still obtain service and filament through the firm Palitra3D. The company also aims to license...
Print Services
Upload your 3D Models and get them printed quickly and efficiently.