NIH Grant Awarded to Organovo to Use Its 3D Printed Liver Tissue to Study Liver Disease with UC San Diego
California-based bioprinting company Organovo is well-known to those in both the 3D printing and medical research worlds, due to its 3D printed kidney and liver tissues. The company, which previously announced its intention to develop a functional, transplantable 3D printed human liver, presented data just a few months ago that shows its ExVive 3D printed tissue is able to survive and function inside an animal test subject.
The world may need that 3D printed liver soon, as deteriorating liver function is an increasingly serious public health concern. Approximately 100 million adults in the US have what’s called non-alcoholic fatty liver disease (NAFLD), and projections show that up to 20 million more have non-alcoholic steatohepatitis (NASH), which is the second leading cause of liver transplants in the country. Both diseases can lead to cancer and cirrhosis if left untreated, and although the progression of NAFLD and development of therapeutic approaches have been studied for decades, neither one is advancing, due to a lack of systems that are able to mimic the biology of the human liver over a longer period of time.
Hopefully this could start turning around, as Organovo recently announced that it has received a $1.7 million grant from the National Institutes of Health (NIH) to study NAFLD with researchers from the UC San Diego School of Medicine.
“We look forward to working with the Organovo team to advance our translational research capabilities and apply them to find new ways to treat NAFLD. Our faculty’s ability to build synergies with our scientific partners makes us uniquely suited for this kind of collaboration,” said Dr. David Brenner, Vice Chancellor of Health Sciences and Dean of the School of Medicine at UC San Diego.
The NIH is the largest public funder in the world of biomedical research – it invests over $32 billion a year in partnerships with top academic centers and commercial organizations to fund innovative treatments and breakthroughs in areas where they are needed the most. Previously, it’s partnered with 3D Systems to advance the integration of 3D printing with healthcare, and also helped to create an online 3D Heart Library.
Dr. Sharon Presnell, Organovo’s Chief Scientific Officer, said, “Traditional preclinical models often fall short in their ability to inform clinical outcomes accurately, largely due to the limited functionality of simple in vitro models and species differences. Our liver tissue has great potential to revolutionize high-value drug profiling and assess the development and progression of complex, multicellular disease processes such as NAFLD.”
By using advanced 3D bioprinted models, researchers and scientists can make a large impact on liver disease research by studying how safe novel therapeutics are in real-world populations, and by facilitating the discovery of new treatment drugs. Organovo’s ExVive Human Liver Tissues offer a multicellular, reproducible tissue model that’s able to retain liver-specific function and metabolic competence over extended periods of time.
“Given the increasing prevalence of fatty liver disease in the U.S. population, advanced 3D liver tissue models that are physiologically relevant and predictive of human liver biology will play a critical role in understanding disease progression and the development of effective treatments,” explained Dr. Presnell. “We are thrilled to collaborate with Dr. David Brenner’s team at UC San Diego given the expertise they bring to this important work, and we are grateful to the NIH for their leadership in supporting critical research.”
As research milestones are able to successfully checked off by Organovo and UC San Diego, payments from the $1.7 million NIH grant will be spread out over a period of three years.
Discuss in the Organovo Grant forum thread at 3DPB.com.
[Source: Organovo]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Protolabs Buys DLP-SLA Combo 3D Printer from Axtra3D
Axtra3D has sold a Lumia X1 to Protolabs, to be installed at the manufacturing service provider’s Raleigh, North Carolina location. The Lumia X1 is a high-throughput vat polymerization system that...
3D Printing News Unpeeled: Custom Cycling Shoes and Microwave Curing
Lawrence Livermore National Laboratory (LLNL) has developed Microwave Volumetric Additive Manufacturing (MVAM), which uses microwaves to cure 3D printed parts. In a paper they explain that a multi-physics model let...
3D Printing News Unpeeled: Filtering PFAS, Solid Knitting & Holographic Direct Sound Printing
A Carnegie Melon University (CMU) researcher has been working on solid knitting for over a decade. Yuichi Hirose has now made a new solid knitting machine that he hopes will...
An Intertwined Future: 3D Printing Nanocellulose
Nanocellulose is an exciting new group of materials that could be widely used in manufacturing. Nanocellulose, also called nano cellulose, cellulose nanofibers (CNF), cellulose nanocrystal (CNC), and microfibrillated cellulose (MFC),...