AMS 2025

3D Printing in the Lab: University of Helsinki Researchers Create Polypropylene Microreactor

AM Research Military

Share this Article

When it comes to creative uses of 3D printing, we usually think of art right away – but artists aren’t the only ones capable of thinking creatively and translating that creativity with their 3D printers. Scientists have been known to put 3D printers to ingenious use to improve or even create new lab equipment, and researchers on the Faculty of Pharmacy at the University of Helsinki recently built an entirely new 3D printed device to speed mass spectrometry analysis.

Typically, microchips used for mass spectrometry analysis at the university are prepared in large batches in the cleanroom, and researchers often get stuck waiting for the full batch to be ready before they can proceed with their work. Dr. Gianmario Scotti and Markus Haapala had a better idea, though – what if they could skip the cleanroom phase altogether by fabricating a small, disposable container that could be connected to a mass spectrometer for chemical reaction analysis?

(L to R) Nilsson, Scotti and Haapala

“I had been working with the 3D printing of stainless steel, so 3D printing was an obvious choice for the fabrication method,” said Dr. Scotti. “But 3D printing of steel is not very economical, so we decided to stay with plastics.”

Finding a plastic material that wouldn’t be damaged by the solvents used in chemical reaction tests was a bit difficult, however. The researchers decided that polypropylene would be perfect, thanks to its high chemical resistance, but although it’s one of the most commonly used plastics in the world, it’s difficult to 3D print and thus tough to find as a 3D printing material. Dr. Scotti finally found a supplier in Germany, however, and they began prototyping until they had a 3D printed microreactor.

A microreactor, for those not familiar with chemistry, is a small container with a stir bar for mixing chemical samples and a thin needle for spraying and ionizing the sample for analysis with a mass spectrometer. It sounds as though it should have been a multi-piece print job, but the researchers were able to 3D print it all in one piece by pausing the print job, inserting the stir bar and ionization tip, and then resuming. 3D printing each microreactor took about an hour. They also used a print platform made from polypropylene, as the material does not adhere well to other types of substrates.

Then it was time to test the microreactor with an actual mass spectrometer, which is fellow researcher Sofia Nilsson’s area of expertise.

“By hooking up a microreactor to a mass spectrometer, reactions can be followed in real time with high sensitivity and selectivity,” said Nilsson. “Thanks to this, it’s possible to detect intermediates and even transition states of reactions, making the stipulation of a reaction mechanism possible, which is what my research is focused on.”

[Photo: Elina Raukko]

The 3D printed microreactor worked just as well with the mass spectrometer as a standard microchip would, if not better – and there’s now no need to wait for a full batch of microchips to be prepared.

The research team documented their work in a paper entitled “A miniaturised 3D printed polypropylene reactor for online reaction analysis by mass spectrometry,” which you can access here. The paper’s authors include Gianmario Scotti, Sofia M.E. Nilsson, Markus Haapala, Päivi Pöhö,  Gustav Boije af Gennäs, Jari Yli-Kauhaluoma and Tapio Kotiaho. Discuss in the Microreactor forum at 3DPB.com.

[Source: University of Helsinki]

 

Share this Article


Recent News

3DPOD 230: AM for Aerospace, Defense and More with Tim Simpson, NASA & Penn State

ADDMAN Adds Continuous Composites Technology for Hypersonics and UAV Applications



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Lockheed Martin Adds 16,000 Square Feet of 3D Printing to Texas Facility

Defense giant Lockheed Martin has unveiled a substantial increase in its additive manufacturing (AM) capabilities with an expansion of its facility in Grand Prairie, Texas. The addition includes some 16,000...

Featured

EOS Launches New P3 NEXT SLS 3D Printer at Formnext 2004

EOS, the German-US leader in additive manufacturing (AM) solutions, has launched the P3 NEXT selective laser sintering (SLS) printer at Formnext 2024 in Frankfurt, Germany (November 19-22). EOS created the...

3D Printing Webinar and Event Roundup: November 10, 2024

We’ve got another busy week ahead of webinars and events around the world! There are multiple open houses and conferences, advanced AM training, a 3D printer launch event, our own...

Dinsmore Gains Ability to 3D Print Functional Stents Thanks to Axtra3D

As essentially everyone familiar with additive manufacturing (AM) knows, one of the greatest advantages of 3D printing technologies is the potential to produce parts with complex geometries that are unachievable...