Continuous Oscillatory Baffled Reactors: Complex Lab Equipment Made Easy Through 3D Printing
Continuous oscillatory baffled reactors (COBRs) may be baffling to many, but for Victor Sans and his team at the University of Nottingham, the equipment is vital to their work. The complex structure of the reactors, which are used to crystallize solids from continuous flow reactions, makes them superior to simpler tubular flow reactors in that it reduces solid deposition and improves reagent mixing. Unfortunately, that complex structure also means that they’re very difficult and time-consuming to fabricate – they’re made from blown glass and require high-powered pumps that typical research labs don’t have.
Sans and his team decided to see if there was a simpler way to manufacture COBRs – and of course there was, in the form of 3D printing. In a study entitled “Advanced reactor engineering with 3D printing for the continuous-flow synthesis of silver nanoparticles,” Sans’ group documents how they created a COBR for silver nanoparticle synthesis. Customizing the design for their specific study, they 3D printed a COBR using an SLA printer for no more than the cost of resin – about £8 worth. Not only did 3D printing the reactors reduce cost and time – each one took about five hours to print – it allowed the lab to create COBRs at a much smaller scale for more precise work.
3D printing the COBRs also means that the lab can create as many as they want, accelerating their work by running multiple reactors at the same time. According to Sans, the flow dynamics of the miniaturized COBRs, or mCOBRs, allow for suspensions of nanoparticles that are much smaller and more regular than those produced by a tubular reactor of similar channel width, which is quickly fouled up by silver deposits. Later, tubular reactors.“This scale is unprecedented,” says Sans. “It bridges the gap between what would be a microfluidic device and a mesoscale reactor…[There is] nothing stopping us from using our imaginations to come up with completely new geometries [for reactors].”
“Residence time distribution experiments have been employed to demonstrate that these small scale reactors offer improved mixing conditions at a millimetre scale, when compared to tubular reactors,” the research paper states. “Nearly monodisperse silver nanoparticles have been synthesised employing mCOBR, showing higher temporal stability and superior control over particle size distribution than tubular flow reactors.”

Victor Sans (front row, second from left) with members of his research group. [Photo: Sans Research Group]
Additional authors of the mCOBR study include Obinna Okafor, Andreas Weilhard, Jesum A. Fernandes, Erno Karjalainen, and Ruth Goodridge. You can access the full study here. Discuss in the Lab Equipment forum at 3DPB.com.
[Source: Chemistry World]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
ATLANT 3D’s Atomic-level 3D Printing Gets $15M in Series A+
After completing the hard work of developing a complete 3D printer in 2024, ATLANT 3D secured a $15M Series A+ round, following its Series A round in 2022. Both rounds were...
3D Printing Financials: AML3D and Titomic Bet Big on U.S. Growth
Australia’s leading metal 3D printing companies, AML3D and Titomic, are expanding fast, but their financial results show different paths. AML3D (ASX: AL3) delivered a 206% revenue increase, crossing the AUD...
Sintavia Buys AMCM Metal 3D Printer with nLight Lasers
Additive manufacturing (AM) service specialist Sintavia recently received a $10 million investment and is already putting the funds to use. The company has purchased a twin-laser AMCM M290-2, equipped with...
Largest American Shipbuilder Installs 3D Printed Assembly on Aircraft Carrier
Shipbuilder Huntington Ingalls Industries (HII) has announced that Newport News Shipbuilding has installed a 3D-printed valve manifold assembly on an aircraft carrier. The company stated, “The use of certified 3D-printed...