3D Printed Graphene Aerogel Microlattices Allow for Better Transport & Energy Storage

Share this Article

LLNL-logoResearchers at the Lawrence Livermore National Laboratory (LLNL) are big fans of using 3D printing and that’s something for naysayers, growing few and far between these days, to note. From creating new materials in metal 3D printing to performing elaborate stress tests, as well as other major contributing projects like creating more standardized 3D printing software, we report on important LLNL news often.

ggRecently they’ve announced a new breakthrough with lightweight 3D printed graphene aerogels exhibiting super compressibility, offering up to 90 percent compressive strain. Aerogel, a solid lightweight component, also known as ‘liquid smoke,’ is interesting and unique in that the gel is replaced with gas. The aerogel component itself is one of the most lightweight solid materials available for use, and makes up a widely diversified range of components which seem to be almost weightless at 98.2% air. They are traditionally used in myriad ways and forms, from insulation to chemical agents and even drug delivery systems.

Using direct ink writing in 3D printing, LLNL researchers have been able to engineer a transformative architecture that far outweighs traditional attempts of creating bulk graphene aerogels that produce ‘largely random pore structures’ unable to provide mechanical transport for items like sensors, flow batteries, and separations.

“Making graphene aerogels with tailored macro-architectures for specific applications with a controllable and scalable assembly method remains a significant challenge that we were able to tackle,” said engineer Marcus Worsley, a co-author of the research paper regarding the subject which appeared in the April 22 edition of Nature Communications.

“3D printing allows one to intelligently design the pore structure of the aerogel, permitting control over mass transport (aerogels typically require high pressure gradients to drive mass transport through them due to small, tortuous pore structure) and optimization of physical properties, such as stiffness. This development should open up the design space for using aerogels in novel and creative applications.”

3dprintedaerWith the new process, inks composed of graphene oxide (GO) are used. Composed of aqueous GO suspension and silica filler, the inks are extruded through a micronozzle during 3D printing.

Through producing the graphene aerogel microlattices which offer excellent electrical conductivity and high surface area, new ways of storing energy are created, as well as being useful in:

  • Sensorsll
  • Nanoelectronics
  • Catalysis
  • Separations

“Adapting the 3D printing technique to aerogels makes it possible to fabricate countless complex aerogel architectures for applications such as mechanical properties and compressibility, which has never been achieved before,” said engineer Cheng Zhu, the other co-author of the journal article.

How do you think these 3D printed aerogels will be useful in the future? Could this process ultimately lead to batteries with higher energy densities? Tell us your thoughts in the 3D Printed Graphene Aerogel Microlattices forum over at 3DPB.com.

Share this Article


Recent News

Cartilage Tissue Engineering via Characterization and Application of Carboxymethyl Chitosan-Based Bioink

University of Sheffield: Comparative Research of SLM & EBM Additive Manufacturing with Tungsten



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Barcelona: Electrostatic Jet Deflection for Ultrafast 3D Printing

Barcelona researchers Ievgenii Liashenko, Joan Rosell-Llompart, and Andreu Cabot have come together to author the recently published, ‘Ultrafast 3D printing with submicrometer features using electrostatic jet deflection.’ Following the continued...

Cornet: Research Network in Lower Austria Explores Expanding 3D Printing Applications

Ecoplus Plastics and Mechatronics Cluster in Lower Austria has just completed their ‘AM 4 Industry’ Cornet project, outlining their findings regarding 3D printing—with the recently published work serving as the...

Additive Manufacturing: Still a Real Need for Design Guidelines in Electron Beam Melting

Researchers from King Saud University in Saudi Arabia explore the potential—and the challenges—for industrial users engaged in metal 3D printing via EBM processes. Their findings are outlined in the recently...

Metal 3D Printing Research: Using the Discrete Element Method to Study Powder Spreading

In the recently published ‘A DEM study of powder spreading in additive layer manufacturing,’ authors Yahia M. Fouda and Andrew E. Bayly performed discrete element method simulations to study additive manufacturing applications using titanium alloy (Ti6AlV4)...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!