HeyGears

3D Printed Graphene Aerogel Microlattices Allow for Better Transport & Energy Storage

RAPID

Share this Article

LLNL-logoResearchers at the Lawrence Livermore National Laboratory (LLNL) are big fans of using 3D printing and that’s something for naysayers, growing few and far between these days, to note. From creating new materials in metal 3D printing to performing elaborate stress tests, as well as other major contributing projects like creating more standardized 3D printing software, we report on important LLNL news often.

ggRecently they’ve announced a new breakthrough with lightweight 3D printed graphene aerogels exhibiting super compressibility, offering up to 90 percent compressive strain. Aerogel, a solid lightweight component, also known as ‘liquid smoke,’ is interesting and unique in that the gel is replaced with gas. The aerogel component itself is one of the most lightweight solid materials available for use, and makes up a widely diversified range of components which seem to be almost weightless at 98.2% air. They are traditionally used in myriad ways and forms, from insulation to chemical agents and even drug delivery systems.

Using direct ink writing in 3D printing, LLNL researchers have been able to engineer a transformative architecture that far outweighs traditional attempts of creating bulk graphene aerogels that produce ‘largely random pore structures’ unable to provide mechanical transport for items like sensors, flow batteries, and separations.

“Making graphene aerogels with tailored macro-architectures for specific applications with a controllable and scalable assembly method remains a significant challenge that we were able to tackle,” said engineer Marcus Worsley, a co-author of the research paper regarding the subject which appeared in the April 22 edition of Nature Communications.

“3D printing allows one to intelligently design the pore structure of the aerogel, permitting control over mass transport (aerogels typically require high pressure gradients to drive mass transport through them due to small, tortuous pore structure) and optimization of physical properties, such as stiffness. This development should open up the design space for using aerogels in novel and creative applications.”

3dprintedaerWith the new process, inks composed of graphene oxide (GO) are used. Composed of aqueous GO suspension and silica filler, the inks are extruded through a micronozzle during 3D printing.

Through producing the graphene aerogel microlattices which offer excellent electrical conductivity and high surface area, new ways of storing energy are created, as well as being useful in:

  • Sensorsll
  • Nanoelectronics
  • Catalysis
  • Separations

“Adapting the 3D printing technique to aerogels makes it possible to fabricate countless complex aerogel architectures for applications such as mechanical properties and compressibility, which has never been achieved before,” said engineer Cheng Zhu, the other co-author of the journal article.

How do you think these 3D printed aerogels will be useful in the future? Could this process ultimately lead to batteries with higher energy densities? Tell us your thoughts in the 3D Printed Graphene Aerogel Microlattices forum over at 3DPB.com.



Share this Article


Recent News

MIT’s Xstrings: 3D Printing That Moves Like Magic

Concept Laser Pioneer Frank Herzog on the Future of 3D Printing Investment



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

AM Forum 2025: Lovely Days in Berlin

AM Forum is a yearly two-day event in Berlin. Rather than being just a national gathering, the AM Forum addresses numerous international and Europe-wide themes. Speakers from around the world...

Featured

CADmore Establishes First Cold Metal Fusion Facility in U.S.

Design and engineering firm CADmore will establish a CADmore Metal application center in South Carolina dedicated to the novel cold metal fusion (CMF) technology developed by Headmade Materials. Located in...

UltiMaker S8 3D Printer Reaches Higher Speeds and Higher Temps

In the market race to develop faster extrusion machines, desktop 3D printer manufacturer UltiMaker has released the new S8 3D printer, featuring an improved feeding system, high-flow nozzles, and the...

3DPOD 243: Volumetric 3D Printing with Xolo CCO, Stephan Kuehr

Stephan Kuehr began his career at 3YOURMIND before joining the volumetric 3D printing firm Xolo. In this episode of the 3DPOD, we discuss Xolo, its technology, volumetric 3D printing, bioprinting,...