3D Printer Put to Work in Developing Cancer-Measuring Transducer

Share this Article

According to the American Cancer Society, in 2017 alone, an estimated 1,688,780 new cancer cases will be diagnosed in the US, and I’m guessing that number is pretty high for other countries as well. So it’s always good to hear about new research and projects centered around early diagnosis and cancer treatment. Medical device contractor the ITL Group (Integrated Technologies Ltd.) recently teamed up with King’s College London (KCL) to develop a cancer imaging project, which will assist with the planning and monitoring of cancer treatment through better initial identification, and sizing, of cancer tumors in the body.

The project is funded by the European Commission’s Horizon 2020 framework, the biggest EU Research and Innovation program ever, with nearly €80 billion of funding available over a total of seven years (2014 to 2020). It is seen as a means to create jobs and drive economic growth, and has provided funding for multiple projects that use 3D printing, such as the MESO-BRAIN Initiative’s work with emulating accurate brain activity, and the collaborative Bionic Aircraft research project.

Siemens Magnetom RT Pro MRI Scanner

The cancer imaging project brings together a consortium of 20 companies, including among them ITL Group, KCL, Philips, and Siemens, to combine engineering developments with Magnetic Resonance Imaging (MRI) in order to make Magnetic Resonance Force (MRF) Imaging for new cancer diagnostics applications, which could potentially give doctors a non-invasive way to both diagnose and measure cancerous tumors. ITL Group joined as a medical device design, development and manufacturing partner in 2015; once early project elements were completed this year, it became an active consortium participant. The consortium has been tasked with producing three prototypes: one each for brain, breast, and liver cancer patients.

KCL came up with the initial hardware design: an advanced vibration transducer that measures cell traction forces and interstitial fluid pressure. ITL Group will continue to develop the original design, taking into account KCL’s thoughts on making the device more aesthetically pleasing and compact, easier to handle, and more efficient. The company plans to make several prototypes, which will be ready for trials and presented to Harvard Medical School this June. ITL has been hard at work, improving upon the original vibration transducers, and continuing to develop the technology that could help doctors determine the best course of treatment for cancer patients.

ITL has been using a 3D printer for a trial period during this project, and it’s not the first time we’ve seen 3D printing used to make an impact in MRI research and development, from 3D printed MRIs for patient education, to a 3D printed gas delivery system for pulmonary MRI research. The technology works well with this particular project: since the transducer will be put to work in an MRI scanner, it’s imperative that all of its components are plastic. 3D printing additionally allows for a fast turnaround, offering another benefit to progress in development.

“This has been a very creative project for us and we’ve received great feedback from King’s on our process – they’ve been impressed by the advanced we have made so far, especially considering the short timeframe,” said ITL Mechanical Engineer Dan Hollands, the Head Engineer and Project Manager on this transducer project. “We’ve had a lot of freedom to develop the product and push the boundaries with experimentation – being both R&D and manufacturer means we can be more radical with design and test in-house before implementing changes. 3D printing has played a big part in the development – we’ve been able to design and print parts, then assess, test and redevelop all in a matter of weeks.”

“Although the MRI technology is well established, this application is ground-breaking and opens up a host of possibilities for diagnostics. ITL is honoured to be part of this scheme and contribute to a potentially life-saving project.”

ITL has worked on a great deal of commercial projects over the past 40 years, and partnered with many of the top universities in the UK. But the grant from Horizon 2020 allows Hollands and the rest of the team the time and resources to experiment more freely, in order to really “push the design to its limits.”

“Teamwork and collaboration is the key to achieving wonderful things – this fact may not be anything new but working on this fantastic project; developing equipment to measure the forces in and around cancer cells has helped us to predict outcomes, choose personalised therapies and even slow the spread of tumours,” said KCL’s Stefan Hoelzl. “Together with the ITL Group we’ve had the opportunity to improve on the early transducer prototype; which is now a more efficient instrument and provides faster results than anyone initially expected.”

“ITL understand and appreciate the heart and soul that has gone into this project. They ensured everything was dealt with perfectly; any improvements, calculations, planning, testing, discussions etc. – They were there every step of the way, respect and well done!”

Discuss in the Cancer Imaging forum at 3DPB.com.

[Source: ITL Group]


Share this Article

Recent News

Materialise Opens €7.5M Metal 3D Printing Facility

3D Printing Enables XOMA Superfoods’ Compostable Single-Use Coffee Pods


3D Design

3D Printed Art

3D Printed Guns

3D Printer Reviews

You May Also Like

3DomFuel Introduces “Enhanced” Landfill-Biodegradable 3D Printer Filament Spool

Back in 2015, Fargo, North Dakota-based company 3DomFuel, Inc. announced its environmentally-friendly Eco-Spool, a 100% bio-based 3D printer filament spool made of bio-friendly materials that break down in landfills much...


3D Printing Used to Develop Menstrual Cup from Female-Owned Brand

3D printing is most often used for product development applications, a crucial tool to understand the look and feel of an item before it hits the market. That was the...

3D Printing News Briefs, March 24, 2021: NSWC Carderock Division, Tel Aviv University, Integza

In today’s 3D Printing News Briefs, we’re covering several different applications for which the technology can be used: maritime and military, electronics and medical research, and engines. A new digital...

BASF Stainless Steel Filament Now Qualified for MakerBot METHOD 3D Printers

MakerBot, a subsidiary of Stratasys (Nasdaq: SSYS) has announced that BASF Ultrafuse 316L Stainless Steel material is qualified for use with the MakerBot LABS Experimental Extruder1 for the MakerBot METHOD...


View our broad assortment of in house and third party products.