Let’s Cut to the Cheese: Researchers Publish Study on How 3D Printing Affects the Structure and Texture of Processed Cheese

IMTS

Share this Article

ucc-logoSometimes, nothing can make a bad day better than a glass of wine at the end of it, paired with a plate of good cheese and crackers, of course; if I had my way, I’d eat Havarti all the time…and Brie…and muenster…and mozzarella…I may have a problem. Anyway, the Easy Cheese 3D printer makes it possible to 3D print cheese, and last year, Dutch researchers were studying 3D printed dairy products and how to get people to eat them. Now, a team of researchers from the School of Food and Nutritional Services at University College Cork in Ireland are studying the effects of 3D printing on processed cheese.

journal-of-food-engineeringThe results of the cheesy study, which ultimately determined and demonstrated that it was feasible to 3D print processed cheese, were recently published in a paper, titled “Effect of 3D printing on the structure and textural properties of processed cheese,” in the Journal of Food Engineering; co-authors include Tony Chan, Valentin Chartrin, Kamil P. Drapala, Alan L. Kelly, Joseph P. Kerry, Camille Le Tohic, Alan P. Morrison, and Jonathan J. O’Sullivan.

According to the paper’s abstract, “In this study, 3D printing was investigated for food applications, using a commercially available processed cheese as the printing material. After melting at 75°C for 12 min, the processed cheese was printed using a modified commercial 3D printer at low or high extrusion rates. Comparative assessment of untreated, melted and printed cheeses was conducted employing texture profile analysis, rheology, colourimetry and confocal laser scanning microscopy (CLSM). Processing (i.e., melting and extrusion) had a significant impact upon cheese properties. Melted and printed cheese samples were significantly (P < 0.05) less hard, by up to 49%, and both exhibited higher degrees of meltability, ranging from 14% to 21%, compared to untreated cheese samples. This shows that 3D printing substantially changes the properties of processed cheese, possibly offering new potential applications for tailoring structures using this novel process.”

cheese-3d-printer

[Image: Dairy Reporter]

The main objective was to learn how the actual process of 3D printing influenced the microstructural and textural properties of the kind of processed cheese you can buy in any grocery store. Generally speaking, the two methods used most often to 3D print food are controlled fusion, which melts powders or solids at controlled temperatures to build 3D food geometries, and controlled deposition, where a molten food product is extruded to create 3D food structures. Food receives two different kinds of stress from 3D printing that can change the its microstructure: heating (melting) and shearing (extrusion through a nozzle). A typical plastic 3D printer was modified so it could successfully print the cheese.

cheese-printer-configuration

Printer configuration

Four types of cheese were tested:

  • fresh, untreated cheese (FC)
  • melted cheese (MC)
  • low-speed printed cheese (LSPC)
  • high-speed printed cheese (HSPC)
cheese-3d-printer-microstructure-visualization

Microstructure visualization: FC has a uniform fat globule size; MC has an increase in fat globule size distribution; LSPC has large, irregularly shaped fat globules; HSPC has smaller, irregularly shaped fat globules.

The cheeses were studied, and assessed, using colourimetry, oscillatory rheology, textural profile analysis (TPA), and confocal laser scanning microscopy (CLSM). Study findings show that the printed cheese was less sticky, softer, and had more meltability than the non-printed cheese: the samples of melted and printed cheese were up to 49% softer, with higher meltability degrees (14%-21%), when compared to untreated samples. The combination of melting and 3D printing worked to decrease the cheese hardness, and the authors of the paper explained that the “shearing effects of the 3D printing process had more significant effects upon the textural properties of processed cheese than the melting process alone.”

It seems that the protein network in the cheese was weakened by a disruption of the protein phase, and the size and morphology of the fat globules were altered, which is what caused the cheese to become more easily meltable. The authors of the paper explain that 3D printed food can offer lots of possibilities for customizing nutrition, like flexible flavors, textures, and geometries, but that the “fundamental principles underlying how this process affects food microstructures and consequently, sensory attributes, need to be further investigated.”

Discuss in the 3D Printed Cheese forum at 3DPB.com.

[Sources: Journal of Food Engineering, Dairy Reporter / Images: Manufacturing Food Futures, unless otherwise noted]

 

Share this Article


Recent News

World’s Largest Polymer 3D Printer Unveiled by UMaine: Houses, Tools, Boats to Come

Changing the Landscape: 1Print Co-Founder Adam Friedman on His Unique Approach to 3D Printed Construction



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Profiling a Construction 3D Printing Pioneer: US Army Corps of Engineers’ Megan Kreiger

The world of construction 3D printing is still so new that the true experts can probably be counted on two hands. Among them is Megan Kreiger, Portfolio Manager of Additive...

Featured

US Army Corps of Engineers Taps Lincoln Electric & Eaton for Largest 3D Printed US Civil Works Part

The Soo Locks sit on the US-Canadian border, enabling maritime travel between Lake Superior and Lake Huron, from which ships can reach the rest of the Great Lakes. Crafts carrying...

Construction 3D Printing CEO Reflects on Being Female in Construction

Natalie Wadley, CEO of ChangeMaker3D, could hear the words of her daughter sitting next to her resounding in her head. “Mum, MUM, you’ve won!” Wadley had just won the prestigious...

1Print to Commercialize 3D Printed Coastal Resilience Solutions

1Print, a company that specializes in deploying additive construction (AC) for infrastructure projects, has entered an agreement with the University of Miami (UM) to accelerate commercialization of the SEAHIVE shoreline...