World’s First Customized 3D Printed Airway Stents Developed and Implemented in France

Share this Article

anatomik-modeling-logoNot all 3D printing in the medical field means that someone’s managed to 3D print skin, kidneys, or other organs. Oftentimes, 3D printing technology is used in the creation of medical tools and instruments, patient-specific modelssurgical guides, and stents. Stents are basically small, expandable tubes used to keep passageways, like blood vessels, arteries, or airways open. Last year, Northwestern University used 3D printing to develop patient-specific vascular stents, and a cardiologist at the Heart Institute Children’s Hospital Los Angeles was able to create a custom pediatric stent by using a 3D printed model of the patient’s heart. But now, researchers in France have broken some new ground. The team was built through a collaboration between Toulouse-based startup AnatomikModeling and the Pulmonology department at Toulouse University Hospital. They’ve successfully developed, and implanted, a number of custom stents that have identical anatomies to the trachea and/or bronchi of their patients, and they say it’s the world’s first 3D customized airway stent ever created.

toulouse-university-hospitalThese made to measure stents give patients who can’t wear standard prostheses hope that they can soon, literally, breathe easy. Stenosis, which means narrowing, of the bronchi and/or trachea, can cause patients to suffer difficulty breathing, and can only be managed by implanting a stent in the patient’s airway. Any number of things can cause stenosis, including tracheal tissue disease, post-lung transplantation complications, anatomical tracheal idiosyncrasies, and post-intubation and post-tracheotomy problems. In addition, patients with lung cancer often suffer from upper airway obstructions. Implanting a patient-specific tracheobronchial prosthesis can be life-changing for patients suffering trachea/bronchi stenosis.

3D custom made airway stent [Image: AnatomikModeling]

3D custom made airway stent [Image: AnatomikModeling]

Most standard prostheses are suitable for the majority of patients, but what about the patients they’re not suitable for? The stents don’t always work for patients in terms of diameter and size, or for patients who have complex bronchial or tracheal anatomy. The field is in dire need of innovation to overcome issues like stent migration and inflammatory reaction or perforation when prostheses are not adapted well…and AnatomikModeling and Toulouse University Hospital are bringing their A game. The design of their new prosthesis won first place in the “Life, Health and Well-being” category at the 36th Concours des Inn’Ovations (Innovations Competition).

ajrccm-2017-195-issue-4-coverAnatomikModeling was established in 2015, after a decade of collaboration with Toulouse University Hospital working on 3D modeling techniques and advanced reconstructive surgery. The startup develops customized medical devices for maxillofacial surgery, thoracic surgery, and reconstructive surgery, focusing specifically on solutions for muscle deficiency (atrophy of the calf muscle), Poland syndrome (total or partial absence of the pectoralis muscle, and Pectus Excavatum (funnel chest).

The first results from a clinical trial that the startup completed with Toulouse University Hospital were recently published in a paper, titled “Treatment of Post-transplant Complex Airway Stenosis with a Three-dimensional, Computer-assisted Customized Airway Stent,” in the American Journal of Respiratory and Critical Care Medicine. Co-authors of the paper include Laurent Brouchet MD, PhD; Alain Didier; Nicolas Guibert; Christophe Hermant; Julien Mazieres; Laurent Mhanna; Benjamin Moreno, PhD; and Gavin Plat.

stenosis-scanner-imageTo make the new prostheses, researchers take CT scan images of the patient’s airways, and create a virtual 3D reconstruction, which is then used to make a mold. The patient-specific prosthesis is made using medical grade silicone elastomer. Using a prosthesis pusher, the prosthesis is implanted during a conventional bronchoscopy, while the patient is under general anesthesia.  The stent’s rigidity can also be calculated, as a function of the stenosis of the bronchi and/or trachea.

virtual-3d-reconstruction-bronchi-stentThe technology is currently being evaluated in an an ongoing clinical trial, and the initial results are pretty promising. Several patients who have successfully received these new implants are reporting no complications yet, and a “markedly improved quality of life.” Discuss in the 3D Printed Stent forum at 3DPB.com.

[Source: AnatomikModeling]

 

Share this Article


Recent News

Arfona Announces New Dental 3D Printing Products and Services at LMT Lab Day

JEC World: AREVO Presents Manufacturing as a Service; Introduces 3D Printed e-Moto



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs: February 26, 2020

In our 3D Printing News Briefs today, we’ve got a workshop and a partnership, along with student discounts for 3D modeling and students 3D printing parts for an electric vehicle....

EnvisionTEC-exocad Partnership Signals Industry Integration

For LMT Lab Day 2020, a number of 3D printing companies are rolling out their dental 3D printing product lines. This year, there’s the sense that there is a change...

New Partnership: BEGO’s Dental Materials Allow Formlabs Customers to 3D Print Crowns & Bridges

BEGO, headquartered in Germany, has been a leader in the dental field for 130 years—and as pioneers in 3D printing for the last two decades, they now specialize in all...

3D Printing News Briefs: February 12, 2020

In today’s 3D Printing News Briefs, we’ve got materials news, then some collaborations and an education story to share. First, KRAIBURG TPE is examining if its thermoplastic elastomers are suitable...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!