University of Illinois at Urbana-Champaign: Researchers Reveal Their Recipe for 3D Printed Bio-Bots

Share this Article

university-of-illinois-urbana-champaignThe worlds of 3D printing and robotics often collide, as we’ve seen continually—and most recently—with everything from nearly invisible hydrogel robots to those capable of doing pushups and sweating. And while scientists predict that one day you may see robots walking right out of your 3D printer, today we are taking a look at bio-bots that seem like they may have walked right out of a sci-fi movie.

Created by researchers at the University of Illinois at Urbana-Champaign, these bio-bots locomote via a true system of muscle cells, powered by electronics. The team, headed by Rashid Bashir, has shared their recipe for building these futuristic machines in a recent Nature Protocols article. In ‘A modular approach to the design, fabrication, and characterization of muscle-powered biological machines,’ by Ritu Raman, Caroline Cvetkovic, and Rashid Bashir, you can take an entirely new DIY approach to the world of bots.

Ritu Raman

Ritu Raman

“The protocol teaches every step of building a bio-bot, from 3D printing the skeleton to tissue engineering the skeletal muscle actuator, including manufacturers and part numbers for every single thing we use in the lab,” explained Ritu Raman, a postdoctoral fellow in the Department of Bioengineering and the study’s first author.

“This protocol is essentially intended to be a one-stop reference for any scientist around the world who wants to replicate the results we showed in our PNAS 2016 and PNAS 2014 papers, and give them a framework for building their own bio-bots for a variety of applications.”

As the authors discuss in their paper, these biological machines can adapt to their environment. They also point out that 3D printing has been a major impetus for the progress seen here in robotics, through allowing such advances in tissue engineering and regenerative medicine. The biomaterials of today now allow for the creation of what the researchers call “smart responsive machines,” able to work in a range of different applications.

“The 3D printing revolution has given us the tools required to ‘build with biology’ in this way. We re-designed the 3D-printed injection mold to produce skeletal muscle ‘rings’ that could be manually transferred to any of a wide variety of bio-bot skeletons. These rings were shown to produce passive and active tension forces similar to those generated by muscle strips,” Raman said.

“Using optogenetics techniques, we worked with collaborators at MIT to genetically engineer a light-responsive skeletal muscle cell line that could be stimulated to contract by pulses of 470-nm blue light. The resultant optogenetic muscle rings were coupled to multi-legged bio-bot skeletons with symmetric geometric designs. Localized stimulation of contraction, rendered possible by the greater spatiotemporal control of light stimuli over electrical stimuli, was used to drive directional locomotion and 2D rotational steering.”

The bio-bot schematic

The bio-bot schematic [Photo: Janet Sinn-Hanlon, University of Illinois]

The team has been working on their bio-bots for years, also dabbling in hydrogels, accompanied by live tissue. They unveiled their walking bots in 2012, with the stunning information that they were powered by live heart tissue gleaned from rats. While this was quite a leap, the researchers kept refining their bots and the tissue they were using as the heart cells contracted too much to allow for optimum control over the electronics.

In writing the paper and releasing their bio-bot ‘recipe,’ the researchers are hoping to see others not only appreciate and re-create their work—but to improve on it as well. The team hopes this is just the beginning as scientists everywhere are able to begin meeting current challenges in medicine and science. Discuss in the 3D Printed Bio-Bots forum at 3DPB.com.

[Source: Phys.org]

 

Bio-bot process overview, from 'A modular approach to the design, fabrication, and characterization of muscle-powered biological machines.'

Bio-bot process overview, from ‘A modular approach to the design, fabrication, and characterization of muscle-powered biological machines.’ (a) Bio-bot design is inspired by biological design in the body. (b) Bio-bot skeletons and muscle bioactuator injection molds are designed using computer-aided design (CAD) software (Steps 1 and 2), (c) tested using finite element analysis (FEA) software (Steps 20–25), and (d) manufactured via stereolithographic 3D printing (Steps 3–10). (e) Muscle rings are tissue-engineered and coupled to bio-bot skeletons (Steps 11–16), and assessed via (f) immunohistochemical staining (Step 26) and (g) externally stimulated force production (Step 19). Each step of the design process (a–g) is iterative, and feedback from each step is used to improve the functionality of the bio-bot with each iteration. Scale bars, 2 mm (e); 500 μm (f). a,c,f adapted with permission from ref. 13, National Academy of Sciences; b,d,e adapted with permission from ref. 14, National Academy of Sciences.

Share this Article


Recent News

The Real Cost of 3D Printing

Wichita State University & Army 3D Print Parts for Aging Black Hawk Helicopters



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

U.S. Army Aeromedical Research Laboratory: 3D Printing Customized Ear Plugs for Soldiers

Researchers JR Stefanson and William Ahroon recently completed a study for the U.S. Army Aeromedical Research Laboratory, releasing their findings in ‘Evaluation of Custom Hearing Protection Fabricated from Digital Ear...

On-Demand Surgical Retractor 3D Printed by the U.S. Air Force

The U.S. Department of Defense is using even more of its mind-boggling budget on additive manufacturing (AM) for virtual inventory and on-demand spare parts. This time, the world’s most dangerous...

West Point: Bioprinting for Soldiers in the Battlefield

Last summer, U.S. Army Lieutenant Colonel Jason Barnhill traveled to an undisclosed desert location in Africa with a ruggedized 3D printer and other basic supplies that could be used to...

Australian Army Enters 3D Printing Pilot Program, Partnering with SPEE3D & CDU

3D printing will soon be assisting members of the military in Australia, as a 12-month pilot training program has begun in a $1.5 million partnership with SPEE3D and Charles Darwin...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!