Additive Manufacturing Strategies

Loren Bradenburg Re-Introduces Age-old Technique of Friction Filling to Repair 3D Prints

ST Medical Devices

Share this Article

spinwelding1One of the most discouraging things that can happen while 3D printing an object, is that something goes wrong close to the end of the print. This may occur because of small pieces of filament getting stuck in places where they shouldn’t be, or for other unforeseen reasons. Time and time again I personally have had prints come off of my 3D printer with little holes, blemishes, or tears in them. This can be quite upsetting, especially when it occurs on an object that had been printing for several hours. Most of the time, I end up throwing these objects in the trash, wasting a large amount of filament, and having to spend another half day printing it out again.

Traditional spin welder

Traditional spin welder

A man named Loren Bradenburg has re-introduced a solution to this problem, and surprisingly it is not a new technique. The process is known as friction filling, and it has been around for quite some time. The premise is based on the fact that plastic has a relatively low melting temperature, a temperature easily obtainable with friction. If you can rub the plastic against an object fast enough, the friction will cause enough heat for that plastic to melt. This melted plastic (3D printer filament in this case) can then be used to fill in holes, gaps, and other blemishes on a 3D printed object.

Back in the 1970’s a toy company, Mattel, sold what could be one of the most dangerous toys ever created, a “Spin Welder”, which was basically a plastic welding device. It allowed kids to construct things, fix toys, and take part in other interesting projects.

Luckily, in order to use this creative process, you don’t need to find an old 1970’s spin welder, as there are other tools available today that can work in its place. Any rotary tool, such a Dremel should work fine. All that is needed is a 3D printed object in need of filling, a Dremel (or other rotary tool), a 3/32 collet, and an inch or so of filament. The Dremel should be set to approximately 10,000 RPM, and then you are ready to go to work, filling and fixing your 3D printed object.

The piece of filament is put into the chuck at the end of the Dremel, with about 3/4 of an inch sticking out. Once ready, the Dremel can be turned on, and filling of a print can begin (as seen in the video above). When the Dremel is powered on, and the filament begins to spin, it will create enough friction when pressed up against the printed object, to make the plastic melt, thus attaching itself to the object.

What is really interesting about this technique, is that it can be done with any color filament, meaning that color, designs, names, etc can be added to 3D printed objects using this method. While this isn’t a revolutionary technique by any means, it is something that can be added to the repertoire of post processing methods for 3D printed objects.

Have you ever tried friction filling with your 3D prints? How did your results turn out? We’d love to hear about and see your results in the friction filling forum thread on 3DPB.com.

 

Share this Article


Recent News

FDM 3D Printing Support Removal Times Cut in Half with VORSA 500

3D Printing Drone Swarms, Part 12: 3D Printing Missiles



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

ICAM 2021: Keynotes on 3D Printing in Healthcare & Aerospace

At last month’s International Conference on Additive Manufacturing (ICAM) 2021 in Anaheim, California, hosted by ASTM International’s Additive Manufacturing Center of Excellence (AMCOE), a wide variety of topics were covered,...

Featured

3D Printing Unicorns: Gelato Gets $240M in Funding, Expands into 3D Printing

On-demand printing platform Gelato, based in Oslo, Norway, achieved the coveted unicorn status after a new funding round. On August 16, 2021, the company announced it had raised $240 million...

Featured

US Army and Raytheon to Use 3D Systems Metal 3D Printing to Heat-Optimize Munitions

3D Systems (NYSE: DDD) has been chosen by defense contractor Raytheon and the U.S. Army’s central laboratory to help with a design optimization project. To do that, the 3D Systems’...

Raytheon Receives Funding for Aerospace 3D Printing of Optical Components

This spring, Ohio-based America Makes, the leading collaborative partner in additive technology research, discovery, and innovation for the US, announced its latest Project Call for AXIOM, or  Additive for eXtreme Improvement...


Shop

View our broad assortment of in house and third party products.