Velo3D

3Dynamic Systems Working on 3D-Bioprinting Human Bone, Skin & Muscle on Demand

Inkbit

Share this Article

Bioprinting certainly will play a major role in the future of medicine.  Implantation of 3D printed bones, soft tissue, and eventually entire organs look to be on the horizon.  With several companies working on the technology, and the science bone-4behind 3D bioprinting making huge strides in recent years, the entire medical field may be in for major disruptions.

Swansea University-based life science technology company 3Dynamic Systems Ltd (3DS) has developed two new additive manufacturing systems, but with a difference. These machines are capable of depositing a range of biologically active and biologically compatible materials. The company is working to fabricate 3D transplantable bone and complex tissue constructs on demand. This exciting breakthrough in tissue engineering technology developed by the company could one day be used to treat severely injured patients. The research has successfully engineered a suitable bone composite and a 3D-Bioprinting technology to make high complexity tissue structures. These have been determined to be optimum materials for producing reliable extra cellular matrix-based tissues.

The first system is the 3Dynamic Alpha Series, which is a single extrusion bone tissue fabrication platform. This machine produces calcium phosphate-based bone for regenerating severe non-stabalised fractures. By accurately depositing a special bone composite in 3D, the correct anatomical geometry is produced. This material is seeded with platelet-derived growth factor which creates the right environment for tissue regeneration by recruiting stem cells that can produce bone and forming a supportive structure, including blood vessels.

The 3Dynamic Systems Alpha Bone Tissue Workstation which is a special 3D Printer that produces biocompatible trabecular bone structures.

The 3Dynamic Systems Alpha Bone Tissue Workstation which is a special 3D Printer that produces biocompatible trabecular bone structures.

The second system is the dual extrusion 3Dynamic Omega Series bioprinter which is used to make three dimensional soft tissue constructs. Currently this is capable of producing heterogeneous tissues which are used for pharmaceutical testing trials. This technique is also being explored as a method for bioprinting different tissues including; muscle, adipose and skin. With this technology, techniques are being developed which could be an effective means toward producing transplantable complex tissues on demand.

3Dynamic Systems Omega Tissue Engineering Workstation, which is a dual extrusion 3D bioprinter used to generate heterogeneous tissues using a printable bioactive gel, protein growth factors and scaffolds which mature into living tissue structures.

3Dynamic Systems Omega Tissue Engineering Workstation, which is a dual extrusion 3D bioprinter used to generate heterogeneous tissues using a printable bioactive gel, protein growth factors and scaffolds which mature into living tissue structures.

3DS’ easy to use technology could see a greater adoption of bioprinting research and further innovation in the short-term by enabling researches in the field to effectively produce experimental tissues and multiple tissue types on demand. As a result the bioprinting technology developed by 3DS could one day transform the field of reconstructive medicine which may lead to direct bio-engineering replacement human tissues on-demand for transplantation.  For further information visit bioprintingsystems.com. Let’s hear your thoughts on 3D bioprinting, and these new techniques in the 3Dynamic Systems bioprinting forum thread on 3DPB.com.

Share this Article


Recent News

French Railway Leader 3D Prints Spare Parts with Metal Filament and BASF’s Replique

Ceramic Electronics 3D Printing Receives $2.7M from Department of Energy



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: June 26, 2022

Events for this week have already started, like the ISTE Live conference for technology in education down in New Orleans. Stratasys continues its Experience Tour in Ohio, Divide by Zero...

Seurat Plans to Multiply Metal 3D Printing Workforce Tenfold by 2025

Seurat, a metal additive manufacturing (AM) technology and services startup, has announced an ambitious plan to increase its number of employees from 100 to 1,000 by 2025. In a press...

Featured

World’s Largest Concrete 3D Printing Facility Opened by GE Renewable Energy

The more that the renewable energy and additive manufacturing (AM) sectors evolve, the clearer it becomes how much the two industries have to offer one another. So far, this has...

Sponsored

AMS Speaker Spotlight: XJet Puts Ceramic 3D Printing to the Test

XJet CBO Dror Danai will be participating in Additive Manufacturing Strategies 2022, Panel 2: Ceramics. In this post, Danai discusses how XJet is ‘walking the talk’ by replacing parts that have...