AMS Spring 2023

3D Printed CubeSat Among 50 Satellites to Be Launched into the Thermosphere This December

6K SmarTech

Share this Article

sun-big-solar-flare-100910-02

A giant solar flare in 2010 [Image: NASA]

At the top of my bucket list is finally seeing the Northern Lights. Although auroras very occasionally make an appearance where I live, they’re a rarity, and I’ve missed them the few times they’ve shown up in Ohio in my lifetime. I’m always on the alert for news of increased solar activity, and thus increased potential for the Northern Lights to extend further south than they normally do. One of these days I’m actually going to see them, even if I have to take a trip up to the far north to do so.

Of course, almost everything comes with a downside, and the solar flares and solar storms that generate the gorgeous aurora light shows can also wreak havoc with electronics on Earth, thanks to the sudden spikes in radiation. It’s difficult to predict how solar flares will affect the Earth, partly because most of the potentially damaging activity takes place in the thermosphere, a region above the Earth that we still know very little about.

We’ll soon know more, though, thanks to the QB50 project, a multinational initiative that will launch 50 CubeSat satellites into the thermosphere to gather data. The majority of the satellites, which were contributed from 48 universities and research institutions from 28 countries, will be launched to the International Space Station in December, and from there into orbit in the thermosphere. It will be the largest, most thorough study of the region ever undertaken.

“This region is poorly understood and hard to measure,” said Andrew Dempster, Director of the Australian Centre for Space Engineering Research (ACSER) at the University of New South Wales. “And yet, it’s the interface between our planet and space. It’s where much of the ultraviolet and X-ray radiation from the Sun collides with the Earth, and generates auroras and potential hazards that can affect power grids, communications and GPS receivers.”

trophosphereEach satellite will have different assigned tasks – thermosphere-related as well as for other individual research purposes. The ACSER-developed satellite UNSW-Ec0, for example, will study the atomic composition of the thermosphere, and will have a few additional unrelated experiments to conduct. One of those involves a space-enabled GPS receiver, developed by Dempster, that will study how signals reflected from Earth pass through the ionosphere; another is centered around testing the reliability of a microkernel computer chip in the harsh radiation of space. Another computer chip will be tested to see if it can self-correct malfunctions caused by cosmic rays, preventing the satellite from crashing.

Then there’s RAMSES (Rapid Manufacture of Space Exposed Structures). UNSW-EC0’s chassis was 3D printed from thermoplastic, and the USNW team is eager to see how it holds up in the unfriendly environment of the thermosphere. If it does well, it’ll be a big step for researchers who are exploring 3D printing as an inexpensive alternative in the manufacture of satellites.

The team behind the UNSW-Ec0 included researchers and students, many working on a volunteer basis; among them were Dr. Elias Aboutanios, Project Leader; Dr. Barnaby Osborne, Project Manager; Dr. Joon Wayn Cheong, Technical Lead; Dr. Eamon Glennon, Namuru GPS Payload Lead; Dr. Ediz Cetin, RUSH FPGA Payload Lead; Prof. Gernot Heiser, Sel4 Payload Lead; and student volunteers including John Chung Lam, William Andrews, Benjamin Southwell, Tom Croston, Luyang Li, Daniel Sherratt, James Bultitude, Shannon Green, Tim Broadbent, William Huynh, and Yiwei Han.

The satellites will orbit anywhere from 3 to 12 months, depending on how long they last – no one knows for sure, as this type of experiment hasn’t been attempted before. (It’d be cool if the 3D printed satellite lasted the longest, wouldn’t it?) On December 30, the satellites, which weigh about 2kg each, will be launched in an Orbital ATK Antares rocket from Wallops Island in Virginia. Shortly after they arrive at the International Space Station, they’ll be fired into orbit from the NanoRacks CubeSat launcher.

cubesat

Dr. Elias Aboutanios with the USNW-Ec0 [Photo: Grant Turner/UNSW]

And then? We get to learn things that no one has ever known before – including answers that may help us to prevent blackouts and dangerous airline communication errors that can result from thermospheric disturbances.

“You’ve got vacuum, you’ve got wild temperature swings, but you also have a lot of radiation, cosmic rays, solar radiation,” said Dr. Elias Aboutanios, project leader for the USNW-Ec0 satellite. “These can upset electronics. So this will allow us to recover from these errors.”

Below, you can see a computer animation of USNW-Ec0 deploying into the thermosphere. Discuss all of this further in the 3D Printed Satellite forum over at 3DPB.com.

 

[Source: UNSW]

 

Share this Article


Recent News

3D Printing News Unpeeled: NASA, ICON, MIT and Purdue

3D Printing Financials: Desktop Metal Analysis



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

Desktop Metal: AM 2.0 Highlights from the Formnext Show Floor

Formnext, the leading international platform for Additive Manufacturing and industrial 3D Printing, returned in full swing to the halls of the Frankfurt convention center in Germany this November. With challenging...

Featured

Desktop Metal Receives $9M 3D Printer Order from German Car Maker

Original equipment manufacturer (OEM) Desktop Metal (NYSE: DM) announced that the company has received a $9 million order from a “large German car manufacturer.” Although it is not clear which...

3D Printing Financials: Markforged’s Supply Chain Issues Wind Down FX20 Production

Supply chain disruptions continue to torment the manufacturing industry. In additive manufacturing, the challenging operating environment is harming production continuity. For Markforged (NYSE: MKFG), in particular, these production hurdles slowed...

Featured

The 19 Most Famous Angel Investors in 3D Printing

You may have the greatest idea in the world and just need that small investment of faith to launch it into a fully-fledged business. If a single individual, perhaps with...