We have already seen several incredible applications of 3D printing and its connection to space travel. Both NASA, and Elon Musk’s SpaceX are pushing the boundaries of the technology in several directions, in the process taking advantage of the infinite complexity that additive manufacturing puts into the hand of designers and engineers. With 3D printing, almost anything seems to be possible.
Back in May, SpaceX showed off their new SuperDraco Thrusters which will go on their Dragon Version 2 spacecraft. These thrusters featured engine chambers which were completely 3D printed. According to the company the thruster allowed them to conserve weight and save money, allowing them to create more complicated components using less individual parts.
It was just a matter of time until we would see similar approaches taken by NASA in their construction of rocket engines for their high powered spacecraft. Afterall they already are deeply involved in the additive manufacturing space, expected to take a 3D printer to the International Space Station later this year, and working to 3D print an entire space telescope. That time has seemingly come, as NASA has just unveiled a rocket engine injector, the first of its kind to ever be 3D printed. In fact, they had two such injectors produced by two different companies, Solid Concepts in Valencia, California, and Directed Manufacturing in Austin, Texas, each tested for 5 seconds at a time. Yesterday they released footage of one engine injector undergoing a hot-fire test at their Marshall Space Flight Center in Huntsville, Alabama.
The part, which is crucial to the engine’s performance, is responsible for sending propellant into the engine. It mixes hydrogen gas, and liquid oxygen together, which combusts at a quite balmy 6,000 degrees Fahrenheit, producing an incredible 20,000 pounds of thrust.
“We wanted to go a step beyond just testing an injector and demonstrate how 3-D printing could revolutionize rocket designs for increased system performance,” said Chris Singer, director of Marshall’s Engineering Directorate. “The parts performed exceptionally well during the tests.”
The injector features 40 individual spray nozzles, 3D printed as a single piece. The entire injector is made up of just 2 parts, whereas, if this component was to be manufactured by traditional methods, there would be 163 different individual parts included. You can imagine why such new techniques are saving NASA, as well as other companies a tremendous amount of time and money, while allowing for complexity which would never have been imaginable without additive manufacturing.
“Having an in-house additive manufacturing capability allows us to look at test data, modify parts or the test stand based on the data, implement changes quickly and get back to testing,” said Nicholas Case, a propulsion engineer leading the testing. “This speeds up the whole design, development and testing process and allows us to try innovative designs with less risk and cost to projects.”
The tests were an overwhelming success, with the injectors performing to standards. Imagine the time the agency can save by simply being able to print new designs within hours, instead of having to wait weeks or even longer to have new parts created via injection molding for testing. The number of applications within engine manufacturing should continue to expand as NASA begins to understand the possibilities that this technology can bring to the table.
Let’s hear your thoughts on this recent accomplishment within the NASA 3D printing forum thread on 3DPB.com. Check out the video of the 5-second hot-fire testing of the engine injector below.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Lockheed Martin Adds 16,000 Square Feet of 3D Printing to Texas Facility
Defense giant Lockheed Martin has unveiled a substantial increase in its additive manufacturing (AM) capabilities with an expansion of its facility in Grand Prairie, Texas. The addition includes some 16,000...
EOS Launches New P3 NEXT SLS 3D Printer at Formnext 2004
EOS, the German-US leader in additive manufacturing (AM) solutions, has launched the P3 NEXT selective laser sintering (SLS) printer at Formnext 2024 in Frankfurt, Germany (November 19-22). EOS created the...
3D Printing Webinar and Event Roundup: November 10, 2024
We’ve got another busy week ahead of webinars and events around the world! There are multiple open houses and conferences, advanced AM training, a 3D printer launch event, our own...
Dinsmore Gains Ability to 3D Print Functional Stents Thanks to Axtra3D
As essentially everyone familiar with additive manufacturing (AM) knows, one of the greatest advantages of 3D printing technologies is the potential to produce parts with complex geometries that are unachievable...