NASA to 3D Print An Entire Space Telescope, Minus the Lenses

Share this Article

NASA has been at the forefront of additive manufacturing technologies for some time now. They already have plans to send a 3D printer to the International Space Station later this year, but have an eventual goal, which nasa-3would even make futurist Ray Kurzweil blush. Eventually, NASA would like to use terrestrial soil on the Moon or even Mars to 3D print actual structures, which could act as bases for astronauts on the foreign worlds. Although this is likely decades away, another amazing application of 3D printing by NASA is already under way.

NASA aerospace engineer Jason Budinoff plans to construct an imaging telescope which would function in space, primarily with 3D printed parts. For those unaware, an imaging telescope is used to take pictures of distant objects. The telescope, which is set for completion sometime next month, would have almost all of its components, including the optical mounts, outer tube and baffles 3D printed, all respectively in one piece. It will measure only about two inches in length, and feature mirrors and lenses which have been produced with conventional methods.

Eventually, however, Budinoff hopes to be able to 3D print the mirrors as well, using aluminum powder which has been laser sintered, and then compressed via high pressured gases.

Some may ask, “why would NASA want to 3D print the majority of these telescopes?”  The answer is multi-faceted. For one, NASA will soon have a 3D printer in space. Imagine if they could print out imaging telescopes or other advanced devices and parts on demand from raw materials. That’s not all though.

A diagram of the 3D printed imaging telescope

A diagram of the 3D printed imaging telescope

“This is a pathfinder,” Budinoff said. “When we build telescopes for science instruments, it usually involves hundreds of pieces. These components are complex and very expensive to build. But with 3-D printing, we can reduce the overall number of parts and make them with nearly arbitrary geometries. We’re not limited by traditional mill- and lathe-fabrication operations.”

Jason Budinoff

Jason Budinoff

There will only be four 3D printed parts in Budinoff’s telescope, however, these four parts, which were laser sintered from powdered aluminum and titanium, are replacing anywhere from 20-40 conventional parts. Additionally, the parts can be much more complex. For instance the 3D printed baffling is designed in a way which no conventional manufacturing technique could accomplish, meaning it can perform its job of reducing stray light within the instrument, to a greater extent.

“I basically want to show that additive-machined instruments can fly,” Budinoff said. “We will have mitigated the risk, and when future program managers ask, ‘Can we use this technology?’ we can say, ‘Yes, we already have qualified it.’”

Budinoff is far from done with his work. He is also working on a larger 14-inch dual channel telescope, and investigating new materials such as invar alloy, which is basically an iron-nickel alloy.

“Anyone who builds optical instruments will benefit from what we’re learning here,” Budinoff said. “I think we can demonstrate an order-of-magnitude reduction in cost and time with 3-D printing.”

With tremendous cost and time savings like this, it’s no wonder 3D printing is becoming a reality within many businesses and organizations. Let’s hear your thoughts on this incredible use of 3D printing in the 3D printed NASA telescope forum thread on 3DPB.com.

[Source: Nasa.gov]

Share this Article


Recent News

Xact Metal Adds PanOptimization Simulation to Low-cost Metal 3D Printing

Small Arms Silencer Market Represents a Significant 3D Printing Opportunity



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Unpeeled: ORNL To Make 46 Tonne 410 Steel Additive Part

EOS is to make its M 290 in Pflugerville, Texas as well as in the US starting in Q1 2025. This is in response to a successful US government policy...

EOS Expands U.S. Production with EOS M 290 Metal 3D Printer

German powder bed fusion (PBF) leader EOS has unveiled plans to expand its assembly of the popular EOS M 290 metal 3D printer at its Pflugerville, Texas facility, near Austin....

3DPOD 216: Glynn Fletcher, EOS North America President

Glynn Fletcher is the President of EOS North America. Transitioning from the machine tool world to 3D printing has given him a unique perspective compared to many others in our...

3D Printing Webinar and Event Roundup: August 31, 2024

For the last webinar and event roundup of the summer, we have a variety of in-person and virtual options for you this week! There will be a Markforged FX20 demonstration...