Boeing Files Patent for Technology to 3D Print Artificial “Ice,” Easing the Aircraft Certification Process

Share this Article

boeing_416x416When it comes to utilizing 3D printing technology within the aerospace industry, very few companies—aside from Airbus perhaps—have been experimenting as much as Boeing. Over the last year or so, Boeing has patented a 3D printing process that prints levitating objects, and has also found a home for a over 20,000 3D printed parts on their Boeing aircraft line. The Chicago-headquartered aircraft manufacturer has showed no signs of cooling down either (pun slightly intended), having filed an application to the US Patent Office for their freshly developed process to 3D print artificial “ice.” Now, you won’t find this technology in your next complimentary on-flight refreshment, nor anywhere else on the commercial aircraft for that matter.

In fact, Boeing is actually planning to use this unique 3D printing process in order to streamline the strict aircraft certification standards process at a greatly reduced cost. At first glance, you may not see ice crystals as much of a threat to modern day aviation. But in reality, ice buildups on aircraft wing edges can pose a substantial risk, such as aerodynamic degradation and increased risk of a fatal stall while in-flight. This dilemma has led the United States Federal Aviation Administration (FAA), among other international aeronautical entities, to require certification that all new aircraft can safely operate in the iciest of situations.

BoeingIce

Boeing aircraft being tested under icy conditions [Image: Gizmag]

The current methods of testing this involves supercooled wind tunnels, which allow for massive ice buildup on the aircraft surface. This buildup is then replicated in the same ice texture using glassfiber and resin material, which is then attached to the aircraft and tested for proper functioning while in-air. The traditional process may work well enough, but according to Boeing, it comes with a number of hindrances, including high cost, imprecision, time constraints, and lack of variable control, as well as the knack to cause damage to the aircraft being tested.

Vital areas to test icing conditions (Source: Boeing)

Vital areas to test icing conditions [Image: Boeing]

With their newly patented method, however, this is shaping up to be a much more efficient process. The artificial “ice” shapes are first designed with CAD, with all the necessary density and textural properties included into the design. These files will then be built up layer by layer to ensure the complex inner structure that is embedded in natural icing conditions. Instead of going through the lengthy and costly traditional testing method, Boeing will be able to simply design the icing conditions from a computer, allowing them to achieve the aimed rigidity, thickness, and other specified conditions needed to appropriately test their new aircraft.

According to Boeing, these artificial “ice” shapes will be able to printed with unique identification codes and markers, which will allow these structures to be properly fit and easily attributed. This new aircraft certification system was invented by Boeing researchers Cris Bosetti, Fred Krueger, Ian Gunter, and Dean Walters, who have based the process on a high-level flowchart engineered to reduce the fabrication to the everyday 3D files, which can be utilized with a handful of 3D printing processes and materials. All in all, the patent—filed September 16, 2014 and published March 17, 2016—will allow Boeing to single-handedly improve the way by which icing conditions are tested on newly manufactured aircraft. Any thoughts on this new technology? Discuss in the 3D Printed Ice forum over at 3DPB.com.

[Source: Patent / Image: Gizmag]
Facebook Comments

Share this Article


Recent News

Processing Complex Collimators Via Binder Jet Additive Manufacturing

MIT: Automated System Designs and 3D Prints Optimized Actuators and Displays to Spec



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Modular, Digital Construction System for 3D Printing Lightweight Reinforced Concrete Spatial Structures

Spatial structure systems, like lattices, are efficient load-bearing structures that are easy to adapt geometrically and well-suited for column-free, long-spanning constructions, such as hangars and terminals, and in creating free-form...

TU Delft: 3D Printing Soft Mechanical Materials for Ultra-Programmable Robotics

TU Delft scientists continue to delve into 3D printing research, recently developing advanced robotics in the form of highly programmable—and soft—actuators. Fabricated with both hard and soft materials, the actuators...

Researchers Compare Microstructure of As-Cast, Hot-Extruded, and 3D Printed Magnesium Alloy Samples

Alloys of the shiny gray chemical element magnesium (Mg) feature a high strength-to-weight ratio and a low density of about 1700 kg/m3, making them good options for technical applications in...

Using Casting, Graphene, and SLM 3D Printing to Create Bioinspired Cilia Sensors

  What Mother Nature has already created, we humans are bound to try and recreate; case in point: biological sensors. Thanks to good old biomimicry, researchers have made their own...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!