AMS 2025

Researchers Use Origami to Design Tiny 3D Printed Surgical Instruments

AM Research Military

Share this Article

craneWhen I was in elementary school, I read a book called Sadako and the Thousand Paper Cranes, which tells the true story of a young Japanese girl who contracted leukemia from the radiation left by the atomic bomb dropped on Hiroshima. According to a Japanese legend, anyone who manages to make 1,000 origami cranes will be granted a wish, and Sadako began folding her cranes in hopes that she could be cured of her leukemia. Tragically, Sadako passed away, but her story has always stayed with me, and it’s what I thought of when I learned of a team of scientists at Brigham Young University who are using the principles of origami to design tiny, 3D printed surgical tools.

Origami has actually been used to inspire several innovations in 3D printing and robotics recently. There’s robogami, tiny crawling robots that fold themselves, and folding electronic structures that may improve radio frequency devices. Brigham Young University professors Larry Howell, Spencer Magleby, and Brian Jensen, along with their mechanical engineering students, are now using the ancient Japanese art to create robotic surgical tools that can fit through incisions as small as three millimeters wide.

origamiforceps_MarkPhilbrick

An incision that small can heal on its own, eliminating the need for sutures – and scars. Not only that, but these tiny robotic tools can allow for more precise and effective surgeries. However, larger tools are needed as well, and that’s where origami comes in. The surgical instruments are designed to be tiny and flat when they are inserted through the incision, but once they are inside the body, they unfold and expand into complex devices such as the D-Core, a tool that, once inside the body, unfolds into two rolling discs that mimic the movement of spinal discs. (You can read more about the D-Core in a study published in Science Direct.)

Howell and Magleby have used the origami concept in their work in other industries, as well. They’ve done a lot of engineering work for NASA, including the creation of a solar array small enough to be stored on a spacecraft, but that expands to 10 times its size once it is launched into space. According to Magleby, the concept is the same for surgical tools.

1-s2.0-S0094114X15001378-fx1

“Those who design spacecraft want their products to be small and compact because space is at a premium on a spacecraft, but once you get in space, they want those same products to be large, such as solar arrays or antennas,” he said. “There’s a similar idea here: We’d like something to get quite small to go through the incision, but once it’s inside, we’d like it to get much larger.”

devicesThe BYU team is collaborating with Intuitive Surgical, creators of the da Vinci Surgical System, which utilizes a multiple-armed robot to perform minimally invasive surgeries. While the da Vinci system already uses very small tools, surgeons have found that even smaller ones are needed, but traditional design has already gone about as small as it can go. The origami concept not only allows for smaller tools, but it also eliminates the need for extraneous parts like pin joints; the tools are flexible enough to move and bend without them.

The researchers have been using 3D printing to prototype the surgical instruments. Not only does 3D printing enable the manufacture of tools with less parts, but it also allows for prototypes to be designed, printed, and taken to the lab in less than a day. This gives the team plenty of room for experimentation with different shapes and constructions; according to Magleby, the goal is not only to make the tools smaller but to make them simpler.

“These small instruments will allow for a whole new range of surgeries to be performed—hopefully one day manipulating things as small as nerves,” Magleby said. “The origami-inspired ideas really help us to see how to make things smaller and smaller and to make them simpler and simpler.”

Origami may not have saved Sadako, but thanks to the creativity of these scientists, it could potentially save many others. Discuss in the 3D Printed Surgical Tools Inspired by Origami forum over at 3DPB.com.

Share this Article


Recent News

3DPOD 230: AM for Aerospace, Defense and More with Tim Simpson, NASA & Penn State

ADDMAN Adds Continuous Composites Technology for Hypersonics and UAV Applications



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Lockheed Martin Adds 16,000 Square Feet of 3D Printing to Texas Facility

Defense giant Lockheed Martin has unveiled a substantial increase in its additive manufacturing (AM) capabilities with an expansion of its facility in Grand Prairie, Texas. The addition includes some 16,000...

Featured

EOS Launches New P3 NEXT SLS 3D Printer at Formnext 2004

EOS, the German-US leader in additive manufacturing (AM) solutions, has launched the P3 NEXT selective laser sintering (SLS) printer at Formnext 2024 in Frankfurt, Germany (November 19-22). EOS created the...

3D Printing Webinar and Event Roundup: November 10, 2024

We’ve got another busy week ahead of webinars and events around the world! There are multiple open houses and conferences, advanced AM training, a 3D printer launch event, our own...

Dinsmore Gains Ability to 3D Print Functional Stents Thanks to Axtra3D

As essentially everyone familiar with additive manufacturing (AM) knows, one of the greatest advantages of 3D printing technologies is the potential to produce parts with complex geometries that are unachievable...