How Ancient Origami Will Influence the Design Future and Speed of Additive Manufacturing

Share this Article

Japanese origami, the art of paper folding, began some time after Buddhist monks first carried paper to Japan during the 6th century. Initially, it was used for religious ceremonial purposes, and that was mostly due to the high price of paper at the time. It’s said that Samurai warriors once exchanged gifts adorned with noshi, good luck tokens made of folded strips of paper.

The modern interest in origami can be traced to the work of Akira Yoshizawa, the artist who created a notation to indicate how to fold origami models. Called the Yoshizawa-Randlett system, it served as the basis for origami societies in Britain, the USA, and Spain. For their part, the Chinese say Japanese origami is a only a historical derivative of Chinese paper folding techniques.

Asymmetry by Erik and Martin Demaine Photo by Christopher Bierlein

Origami Art: “Asymmetry” by Erik and Martin Demaine. Photo by Christopher Bierlein.

Now researchers have created what they call Assembled Additive Manufacturing, and it’s basically a hybrid process for fabricating objects which was inspired by the delicate and intricate constructs made with the ancient art of origami.

origami additive manufacturingThe authors of a paper on the subject, Dongping Deng and Dr. Yong Chen, of the Daniel J. Epstein Department of Industrial and Systems Engineering at the University of Southern California, say it’s a lightning fast AM process creating prototype models with thin-shell shapes.

“We developed various approaches, and Origami was one of the topics identified,” Chen says. “We began to investigate the origami idea to improve the building speed of additive manufacturing. The test cases were designed to demonstrate the capability of the developed method. How to fold the designed sheet accurately is one of challenges we experienced.”

Chen was a senior R&D engineer at 3D Systems for five years before joining the faculty at USC, and he says it was working closely with customers in the private sector that provided a major influence on his current research at USC.

It begins with the analysis of a digital model to determine geometries which can be fabricated using layer-based — and origami-based — approaches.

AAM process model example 2The thin-shell model which results from the origami-based approach is unfolded into a 2D sheet, and once the fabrication and folding of the 2D sheet is complete, a post-processing technique is developed before the final prototype is fabricated using the 3D printed, layer-based fabrication process.

Chen and the research team say objects with thin-shell structures are commonly used in various products from food containers to storage boxes, and the lightweight and less material-intensive results will be widely used in the engineering systems of the future to satisfy sustainability requirements.

A general method based on offsetting polygonal models was presented to convert a solid object into a hollow one to reduce its weight.

The say the process works because their 3D texture-mapping method can capture complex internal structures to achieve both light weight and required strength.

AAM process modelIt all comes down to the fact that hollow objects with thin-shell structures are quite difficult to build using subtractive or deformation-based manufacturing processes like machining and injection molding. In those processes, tools have a hard time accessing the internal features needed, while layer-based additive manufacturing (AM) processes overcome those limitations by converting a 3D model into a set of 2D layers for final fabrication.

The scientists say experimental tests of the Assembled Additive Manufacturing (AAM) process have been performed to compare the fabrication speeds of the AAM and the layer-based AM processes, and those tests have found potential benefits of the AAM process in creating hollow objects by shortening the fabrication time and removing the need for printed supports. They say the next steps are developing a more general unfolding algorithm for a given CAD model, developing internal and external actuation mechanisms for better control of self-folding and automatic folding, testing the AAM process in the micro-scale, and identifying novel applications for their method.

What ancient arts or sciences can you imagine with influence modern technology the most? Have you ever worked on a technology project that took ancient arts as inspiration? Let us know about your experiences in the Origami Will Influence Additive Manufacturing forum thread on 3DPB.com.

Share this Article


Recent News

Fortify Adds Two New Composite 3D Printers, Customization Software

Bassetti Buys 3D Printing MES 3DTrust



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Benny Buller on VELO3D’s SPACtacular Rise in Metal 3D Printing

2021 has already been a SPACtacular year for the 3D printing industry, with several companies already announcing mergers with special purpose acquisition companies (SPACs). This includes Markforged, Rocket Lab, and...

Featured

Materialise Has Option to Acquire 3D Printing MES Company Link3D

Belgian 3D printing service and software company Materialise (Nasdaq: MTLS) has announced that it has an option to acquire Link3D. The transaction will close later this year, but the company...

Featured

3D Printing Bureaus on the Rise: Sandvik’s BEAMIT Acquires 3T Additive Manufacturing

The BEAMIT Group has acquired polymer and metal additive manufacturing (AM) provider 3T Additive Manufacturing from the German holding group AM Global. The deal represents the first step towards BEAMIT’s...

3D Printing Webinar and Virtual Event Roundup: April 10, 2021

We’ve got another packed week of webinars and virtual events for you, starting with Hannover Messe 2021 on Monday. What else is coming up this week: ASTM CoE’s personnel certificate...


Shop

View our broad assortment of in house and third party products.