ZMorph 2.0 S Hybrid Offers Precision & Quality as Student Makes Orthosis with 70 Pieces

Share this Article

UntitledWe all look forward to hearing of the latest case studies from ZMorph. While they are always entertaining and full of information, we learn a lot about what today’s innovators are interested in making—as well as how ZMorph’s extremely versatile technology is helping them to do so, from making amazing 3D printed mechanical clocks with the ZMorph Hybrid printer to a cool neon office sign made with their Dual Pro Extruder. Today though, we’re interested in a new case study that ZMorph has presented that offers all the innovation but with much more serious impact—and potential for further designs down that line that will help people in need of 3D printed correction devices.

wrobel_kolo

Eliza Wrobel

We follow many stories about 3D printed prosthetics. In this case, however, biomedical engineering student Eliza Wrobel had quite the project ahead of her when she agreed to make an orthosis for a 33-year-old male who’d been in an accident and was suffering from tetraplegia, which usually means partial paralysis for the patient. With an orthosis, movement can be guided, assisted, or restricted as well as offer correction to a limb, depending on the patient’s needs.

Working under Bogdan Dybala, PhD. Eng. at the Faculty of Mechanical Engineering of Wroclaw University of Technology in Poland, Eliza’s mission was to help the patient by creating an orthosis that allowed him to do things like play his favorite sport—table tennis—as well as grab objects and hold onto light dumbbells. To allow for these specific requirements, Eliza had to employ reverse engineering. The process consisted of making a plastic cast and mold which was then 3D scanned at the university.

3D_Printed_Rehabilitation_Orthosis_Design_11-1024x683Once the 3D model was completed, Eliza was able to begin designing various solutions in CAD. Her challenge was in finding a good balance between designs used for prosthetics and standard orthosis as the ‘husk’ of the device had to be closely fitted to the wrist while fingers were duly supported; subsequently, Eliza had to make two joints for the thumb and three joints in every other finger. With all of this connected, she used one large lever at the top to control a series of other levers which manipulate the multiple parts.

This device ended up using a stunning 70 3D printed parts in its construction. According to the ZMorph team, Eliza used their Voxelizer software to prepare them for 3D printing and then they were fabricated on the ZMorph 2.0 S hybrid 3D printer with single head extruder using 1.75mm ABS filament in a variety of colors. To connect the tinier levers and casings to each other, Eliza used numerous, small 3D printed pins. Because of the precision afforded by the ZMorph printer, she was able to use few parts that weren’t 3D printed.

A Velcro strap was used to attach the orthosis to the hand, and the patient is already using Eliza’s prototype for limited functionality in his hand, allowing him to do moderate activities. Indeed, Eliza may also use this prototype to eventually produce many more orthotics for those in need. You can also explore other ZMorph case studies right here. Discuss in the 3D Printed Orthosis forum over at 3DPB.com.

mulit

Share this Article


Recent News

3D Printing News Briefs, November 28, 2020: Thinking Huts, nScrypt, Alloyed, ASTM International

RYUJINLAB, INC Launches Low-cost Metal 3D Printing Service for General Public



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

Meltio Engine Jumps over the Limits of Metal 3D Printing by Enabling Hybrid Fabrication

MELTIO has officially presented today the new version of the MELTIO Engine, a fabrication module which enables 3D printing of full density metal parts when integrated with CNC machines, robots,...

3D Printing for Preppers: The Virtual Foundry’s Metal 3D Printing Filament

Foreshadowing the expansion of bound metal printing by several years, Bradley Woods developed the idea of metal 3D printing filaments in 2014 when he obtained his first 3D printer kit....

Sponsored

Additive Manufacturing 2.0: The future of metal manufacturing starts now

It’s increasingly clear: The way we make things is changing. As more companies realize the advantages that come with additive manufacturing – like tooling-free manufacturing, ability to create highly complex...

3D Printing Financials: Revenue Up in First Nine Months of 2020 for SLM Solutions; Q3 Earnings Down

For the third quarter that ended September 30, German metal 3D printer manufacturer SLM Solutions reported revenues decreased by 13% to €14.8 million compared to last year’s €17 million. Along...


Shop

View our broad assortment of in house and third party products.