Using a combination of motors and 3D printed parts, he was able to create a robotic, voice-operated arm for a cost of about $260. Many high-end prosthetic arms can cost upwards of $35,000. Cheaper options are available, but with lower cost comes lower quality. Some have little function other than opening and closing the hand. Using a combination of voice control and electromyography, Mehta’s prosthetic hand can grasp, pinch, point, and perform other precise tasks the way a real hand would. It also comes a step closer to simulating the way a natural limb is controlled. Rather than the brain sending a command to the arm to move, the user speaks a command into a small microphone attached to the arm.
“You can say ‘spoon’ and the hand will make a shape that will be able to hold a spoon,” Mehta said.
Another factor the 17-year-old considered was upgradability. Children with prosthetics face a challenge that adult amputees do not. Prosthetics can be outgrown just as clothing can, and, as Mehta pointed out, many children need to change their prosthetics every six to eight months. By using inexpensive 3D printed parts, the robotic arm can be resized for a minimal cost.
In February of this year, Mehta entered his robotic arm into the Irvine Public School District science fair, where he won first place. He then went on to win four first-place awards in the Orange County Science and Engineering Fair, and was subsequently chosen to enter the 2015 Intel International Science and Engineering Fair in May. There, his project took third place in the biomedical and health sciences category. He also took a third place award in the California State Science Fair; you can see his project abstract here.
Now that the prototype has shown so much potential, Mehta plans to develop his robotic arm further and enter more science fairs. Ultimately, he hopes that his invention can one day enter the prosthetic marketplace and further simplify the lives of amputees.“I’m done with the software,” Mehta told the Daily Pilot. “What I’m trying to do now is work on usability and design. Hopefully someday it can be tested with an amputee and I can work on that process from there.”
As of right now, Mehta’s design has met his initial criteria but is not yet fully functional in an ideal shape. The materials used included, he noted, “the Arduino board, servo motors, the 3d printer, sEMG electrodes, bluetooth module, two prong microphone and the rest were mainly used to assemble the hand.”
In the design phase, Mehta received help from University of California Davis orthopedic professor Gavin Periera, who, he said, “helped me with information on amputation procedures, current prosthetic, etc” as well as from “the staff at the Long Beach public library allowed me to use their 3D printers.”
He has certainly made a promising start. Through the initiative and intelligence of Mehta and other young people like him, the lives of amputees can only improve. Let us know your thoughts on his design in the High School Student Designs 3D Printed Prosthetic forum thread over at 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
America Makes Doubles Down: $6.6M Awarded to New AM Projects Within Days
Just days after announcing $2.1 million in funding for additive manufacturing (AM) projects, America Makes is back with another big move. This time, it’s a $6.6 million award to projects...
Rebuilding the Industrial Base: Government and National Clusters
The demand to scale and commercialize advanced manufacturing technology, particularly additive manufacturing (AM), is increasing. Exploring government and national clusters is imperative to rebuild the industrial base. As the industry...
New AM Projects Get $2.1M Push from America Makes
America Makes has awarded $2.1 million to six new projects to tackle some of the biggest challenges in additive manufacturing (AM). The funding, provided by the U.S. Department of Defense...
The Stakeholders’ Conference: Additive Manufacturing Strategies
The additive manufacturing (AM) industry has always been one that’s prone to sudden, drastic changes, and clearly, this is as true now as ever. With that in mind, one of...