University Student Uses 3D Printing Technology for Snowboard Binding System

Share this Article

Robert LeenThe BOA System is a proprietary closure device made of of steel lace, nylon guides and a mechanical reel and it’s used to provide closure to boots and other wearables. A turn of a knob tightens down the mechanism, and with more than 25 million products using the system worldwide, it’s no less than a reinvention of the way shoes, medical braces and sporting equipment are fitted.

Robert Leen snowboardWhen surfer and entrepreneur Gary Hammerslag founded it in the 1990s, the inventor was frustrated by what he saw as the shortcomings of traditional laces on snowboard boots and hockey skates. So he began to prototype a better way of making them fit and stay on duty. In relatively short order, snowboarding brands from K2 to Vans began using the device, and those early adopters were quickly joined by manufacturers in golf, cycling, utility and safety and medical products.

Robert Leen, a snowboarder and design student, was working on a 3D printed snowboard binding, and planned to incorporate the BOA Closure System. Leen’s project, supervised by Paul Collins and Clara Usma-Alvarez at the Centre for Advanced Design in Engineering Training at Deakin University, helped Leen create his product.

Called the GripTight BOA System, the prototypes were 3D printed on a Connex3 Objet500 Polyjet machine supplied by Objective3D.

The Centre for Advanced Design in Engineering Training focuses on engineering training, and it houses virtual – and real – prototyping facilities which allow students like Leen to develop solutions from imagination to concept.

Leen, now a Research Assistant at Deakin University in Mechanical and Industrial Engineering, put his experience as a snowboard instructor with Hakuba Snowsports to work on the design and development of the GripTight BOA System.robert leen snowboard binding

“The motivation for my project came from my wanting to tie my love of snowboarding into my engineering studies,” Leen says. “We sent a survey out to almost 300 enthusiasts and professional snowboarders all around the world, and they identified that they needed a binding that was pain free as well as responsive.”

The designer says while it was largely the feedback he and the team at Deakin received from the focus groups which led to the success of the project, the proof was in the moment the product was first tested.

Leen says the uncertainty involved in putting on the bindings – and then heading down the mountain – was wiped away on the first run he took down the mountain while wearing the new design. He says those results validated the amount to effort put in over the course of the design process.

What do you think of this 3D printed snowboard binding system by Australian university student Robert Leen? Let us know in the 3D Printed Snowboard Binding forum thread on 3DPB.com. Check out more about the project in this video:

 

Share this Article


Recent News

Long Beach: The New Site for Relativity Space’s 3D Printed Rockets

Olaf Diegel’s Latest 3D Printed Guitar, the Xenomorph



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Costa Rica: Researchers Design 3D Printed Medical Device for Suturing Extremities

Our skin protects us from invading microorganisms and foreign substances, eliminates harmful toxins, helps to regulate our core body temperature, and is in charge of receiving both tactile and thermal...

Dassault Systèmes Selects Xometry as Prime Partner for Marketplace Integration

At 3DEXPERIENCE World 2020, CAD giant Dassault Systèmes made a number of announcements related to its 3DEXPERIENCE suite and SOLIDWORKS CAD software. One piece of news in particular has particular...

3D Printing Services: Budgeting Time & Delivery Systems for On-Demand Production

Researchers Carl Philip T. Hedenstierna, Stephen M. Disney, and Jan Holmström explore one of the most fascinating new areas of manufacturing today as 3D printing service bureaus offer assistance to...

Tissue Engineering: 3D Printed PLA Scaffolds for Seeding Human Dermal Fibroblasts

Researchers in Turkey are 3D printing with PLA in a new study regarding human dermal fibroblasts and tissue engineering of skin cells. Their new findings are outlined in ‘3D Printed...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!