AMS 2025

Researches Study the 3D Printing of Surgical Instruments for use in Long Space Missions

AM Research Military

Share this Article

Looking toward a future when space missions might occur at great distances over even longer periods of time, means being prepared for any number of emergencies or eventualities that could occur. While it would not be an ideal situation for someone to need to perform surgery in space, accidents or unexpected illnesses do occur and must be prepared for.

The_International_Space_Station_with_ATV-2_and_EndeavourImagining this future scenario, researchers Dr. Julielynn Y. Wong from the Center for Innovative Technologies and Public Health in Toronto and Dr. Andreas C. Pfahnl of Devicix, LLC in Eden Parie, MN undertook a study to examine the possibilities for 3D printing surgical instruments.  They shared their results in the journal  Aviation, Space, and Environmental Medicine. Should this prove to be a feasible mechanism, by which instruments can be created, having a 3D printer and filament on board would mean that instruments could be produced on an ‘as needed basis’, thereby greatly reducing the amount of preparatory supplies that would have to be loaded. In addition, this capability would expand the ability of any on flight medical team to respond to nearly any medical emergency.

What the researchers did to approach this problem, was to break it into several components. The first phase of understanding the possibilities for such a concept was to study the creation of 3D printed surgical instruments here on earth. In this case, they chose to evaluate Fused Deposition Modeling as a method for creating 10 surgical instruments from ABS plastic. They were particularly interested in gathering data regarding instrument fabrication times, the perceived functional performance of such instruments, and the optimal parameters for creation of the instruments using FDM printing of ABS plastic.

The research team used SolidWorks 2012 to model a towel clamp, sponge stick, scalpel handle, straight hemostat, curved hemostat, Adson’s toothed forceps, Debakey tissue forceps, smooth forceps, Allis tissue clamp, and right angle clamp, for a total of ten instruments. They chose this tool set because of the multiple functions that each tool performs, making it a likely candidate for any particular surgical intervention. As these tools are currently produced in stainless steel and in a disposable plastic version, there were models easily available for study. However, modifications to the original designs had to be made to account for differences in the material properties of ABS printed plastic.

Screen Shot 2014-07-11 at 5.01.58 PMThe first phase of the investigation was to determine if FDM printing of ABS plastic would even be a viable manner in which to produce these tools, as otherwise the other two primary questions would be irrelevant. The researchers began by subjecting samples to a series of tests, designed to provide information about the material’s stiffness and yield strength. The data gathered through those tests was then applied to the design and fabrication of the actual instruments.

The STL files created taking the material properties data into account were then printed on a Dimension Elite 3D printer, using Stratasys CatalystEX 4.0.1 3D printing software. The layer resolution was set to 0.178 mm, the model interior to ‘solid,’ and the support fill to ‘sparse.’ Each instrument was printed at the orientation that would best serve its use. After each print, the instruments were assessed for functionality and further modifications to the design were made as necessary.

Screen Shot 2014-07-11 at 5.05.44 PMWhen the instruments had met the performance standards indicating the possibility for their creation, the researcher moved to the next phase of their investigation: experiential assessment. For this portion of the experiment, they reduced the number of instruments being tested to five. 13 surgeons were asked to complete a series of tasks with a set of traditional instruments and then with a set of 3D printed instruments. When they completed the tasks, they were given a survey designed to reflect their evaluation of the experience. In addition, the surgeons were timed during task completion in order to better understand the quantitative differences that the different materials might present.

As a result, the investigators learned that the strength and stiffness of the horizontally printed ABS plastic was decreased as a result of the FDM layering process. However, creating thicker instruments, especially in areas that receive high bending loads, worked to mitigate weakening. The print orientation must be transverse to the loading force direction in order to create instruments that will not break.Dimension_Elite

Looking at the study as a whole, it appears that 3D printing is an extremely viable method for creating surgical instruments on earth. All surgical tasks performed in the study were successful when using the 3D printed versions of the surgical instruments. A caveat, however, is the time that it takes to produce the instruments, approximately one and one half hour, renders them impractical for emergency situations. At this stage, it may be more realistic to imagine them as being used to replenish supplies. In addition, it is highly likely that redesigning smaller instruments in the short term can increase the speed of printing, and in the long-term 3D printing technology advances may increase the speed further.

Other advantages to 3D printing surgical instruments range from the ease of tool redesign (such as to accommodate a left hand dominate back up medical officer) to reduction in costs and improvements in the self-sufficiency of space missions. Therefore, there is great promise for further experimentation to be done in zero gravity environments.

Additional investigation is required to determine the sterility and sterilization of 3D printed ABS surgical tools. This study also raises a great number of questions for future research regarding the possibilities presented by 3D printing in conjunction with the operation of the International Space Station.

While it’s clear we have a long way to go before we can expect to travel to Mars and beyond, 3D printing may be bringing that day closer than it has ever been.  What do you think about 3D printing surgical instruments in space?  Will it one day be a reality?  Discuss in the 3D printing of surgical instruments forum thread on 3DPB.com

Share this Article


Recent News

AML3D Expands into Utilities with Sale of Metal 3D Printer to the Tennessee Valley Authority

LEAM’s Clever Add-On Solution Is Making Large-Scale 3D Printing Work Smarter, Not Harder



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Former Formlabs Exec is New Quantica CEO

Inkjet 3D printer manufacturer Quantica has appointed Stefan Hollaender as its new Chief Executive Officer (CEO). This leadership change marks a pivotal moment in Quantica’s evolution, with the outgoing CEO,...

Sponsored

Innovations in Electronics and Additive Manufacturing: Highlights from Electronica and Formnext 2024

In November, J.A.M.E.S. participated in two big industry events: Electronica and Formnext 2024. These international events have been a good opportunity for J.A.M.E.S to show our ability in 3D-printed electronics...

Featured

Printing Money Episode 24: Q3 2024 Earnings Review with Troy Jensen, Cantor Fitzgerald

Welcome to Printing Money Episode 24. Troy Jensen, Managing Director of Cantor Fitzgerald, joins Danny Piper, Managing Partner at NewCap Partners, once again as it is time to review the...

Sponsored

Finding Solutions in an Uncertain Market: The impact of reduced material providers and trade tariffs on filament supply

The additive manufacturing market has been an ever-changing market with rapidly evolving technological advancements and growing dependencies on material innovation. The recent wave of material suppliers shuttering operations and the...