Inkbit

Team Continues Study of 3D Printed Microstructures, Tests 3D Printers, Autodesk Ember Shines

Eplus3D

Share this Article

qingnan

Qingnan Zhou

Qingnan Zhou quite simply has a fascinating fascination with materials in terms of microstructures in 3D printing as well as how they hold up under different fabricating scenarios. We’ve reported on his previous work regarding 3D printed microstructures, and are now enjoying the enlightenment to be found within the first part of his latest research, ‘A Study in Fabricating Microstructures (Part 1).’

The New York City-based designer is dedicated to researching geometry processing and fabrication, with a focus on analyzing structure, mesh generation and–as you will certainly see here–pushing the limit of 3D printing technologies as much as possible.

Bringing up a very astute point regarding 3D printing and the fact that difficulty or ornateness in 3D printing isn’t logically connected to time and money, Zhou and a time of other individuals that he collaborated with, including Julian Panetta, Luigi Malomo, Nico Pietroni, Paolo Cignoni and Denis Zorin take us on a journey of sampling quality throughout the world of the complexity paradox, pointing out that due to this wonderful glitch in the universe, artists and designers have in many cases been able to live out their wildest dreams in fabrication.

1-joSu8EqMtAXB7IP5YVpd5w

Sample from the Dimension Elite

“I hope to share my experience in 3D printing flexible microstructures, where the thickness of each strut ranges from 0.2mm to 0.5mm,” begins Zhou as he takes us on a journey into the world of 3D printing in Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), Stereolithography (SLA) and Direct Light Modeling (DLM).

Heading to the FDM printer, Zhou found that using a Dimension Elite courtesy of FabLab Pisa yielded some rather sad, inaccurate results.

“There are visible artifacts such as staircase and dangling strands of extruded material,” said Zhou.

With the Prusa i3, again the results were pretty sad and droopy, showing that while this popular 3D printer may have sway with makers around the world, it wasn’t up to snuff for printing a cube with soft PLA at a layer thickness of 0.3mm, without any support. As Zhou points out, without using supports, it did look ready to collapse like an ice cream cone on a sweltering day. The last excursion to the FDM printer by another maker, Pavel Pavlov, was better, in using a stronger more wiry material, but it also exhibited ‘broken struts’ and inconsistencies.

Even Shapeways and SLA couldn’t handle the specifications for Zhou’s microstructures. Ordering several pieces in their white, strong and flexible materials, the 3D models were abysmal at best, and one broke altogether–while the last became misshapen due to shipping stressors. Increasing thickness struts helped solve those problems, but also distorted the microstructure shape that Zhou was shooting for to begin with. Those results pretty much knocked SLA out of the race for printing (or, god forbid, shipping) his microstructures.

1-WbiuUnC6fCg42tEayXy2IA

Samples from Shapeways

Experimenting with resin 3D printers did give more positive results but initial results with the ProJet 7000 HD from NYU Advanced Media Studio were murky in terms of rigid settings and supports, and that led to issue with the customized support-dependent microstructures. Upon working around some of the software issues, they did actually in the end find it to be ‘a good candidate’ for their projects though.

They finally began to see a ray of hope with the use of the B9Creator, printing samples at 50 micron XY resolution and 30 micron layer thickness.

“The advantage of B9Creator is that you can change every setting,” said Zhou. “To ensure the microstructures can be printed, careful calibration of the built platform and the projector is essential.”

1-_E9pkUIEA1FgR_fzTMGmlw

Samples printed with B9Creator using red resin

Refining coating of the PDMS, as well as fiddling with some of the settings, Zhou and his team found the B9Creator to be a pretty good choice for 3D printing their microstructures.

“Overall, B9Creator is a good fit for printing microstructure due to its easy-to-adjust settings and its low cost. We used it to print the majority of samples. The drawback of B9Creator is that it require a lot of maintainess (sic). During the deadline crunch, I have to recoat PDMS almost weekly,” said Zhou.

Most interesting was left for last, just by luck of the draw, as Zhou tested out the Autodesk Ember 3D printer, ‘courtesy of Duann Scott and the Autodesk Spark team.’ Using a layer thickness of 25 microns and XY resolution of 50 microns, last was certainly not least as the team finally hit pay dirt, comparably, and seemed to get closer to what they needed for 3D printing their microstructures.

“By far, Ember gives the best quality prints,” said Zhou. “The resolution of Ember is amazing. I am able to print struts slightly thicker than a human hair (200 micron in diameter). The printed microstructures are amazingly flexible.”

“Just like B9Creator, the clarity of the transparent window influences the achievable resolution by a lot. For Ember, the transparent window becomes cloudy at a much lower rate,” said Zhou. “I was able to print daily for over a week and the PDMS only became slightly cloudy.”

1-f88m9SR7NTnevH0J16T4gQ (1)

Cloudy PDMS on Ember can cause broken struts

Some parameters did have to be played with and changed and some of the initial 3D prints failed, but the team was rewarded at the end in using the Ember.

“Among all the printers we tried, Autodesk Ember stands out for its high accuracy and usability. The B9Creator is a very good choice but one have to put in a lot of efforts to get good quality outcomes,” said Zhou. “ProJet 7000 HD is also capable of printing microstructures, but its high price and poor software support make it less desirable.”

1-agiZFp1f0c3TdanRU4mV8Q

Sample 3D printed with AutoDesk Ember

 

Share this Article


Recent News

Dual Takeovers: Solid Solutions Secures 3DPRINTUK and 3DVerkstan

KASK Officially Introduces New Elemento Helmet with 3D Printed Technology



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Financials: Profits Elude, Revenues Rally in MKFG, XMTR, AM3D, and DM Earnings Reports

In the first quarter of the year, Markforged (NYSE: MKFG), Xometry (NASDAQ: XMTR), and SLM Solutions (AM3D: Xetra) all reported increasing revenues, which is a positive sign of growing market...

Monster Energy Yamaha MotoGP Signs Three-Year 3D Printing Deal with Roboze

Roboze, an additive manufacturing (AM) leader in super polymers and composite materials, has entered a three-year technical collaboration with the Monster Energy Yamaha MotoGP team, beginning in 2023 and running...

Ulendo’s $1M NSF Grant Will Expand its Software to New 3D Printers

3D printing software startup, Ulendo just scooped up $1 million dollars from the National Science Foundation (NSF) program known as America’s Seed Fund, bringing the company’s fundraising total to over...

3D Printed Compostable Clay Cup Startup Bags $6.5M in Seed Round

Berlin-based startup GaeaStar has found a solution to single-use plastics. Using a “drink to dust” technology, the business 3D prints clay containers that don’t require recycling. Inspired by 5,000-year-old Indian...