BeAM’s CLAD 3D Printing Technology — Metal 3D Printing Evolved for Repairs & Manufacturing

IMTS

Share this Article

be1The 3D printing of metal promises to change the face of manufacturing worldwide over the next decade. While the technology is still only very young, the rapid acceleration and innovation within the space will allow companies to streamline the manufacturing of multiple components, greatly increasing design variability, and reducing the space required on the manufacturing floor, as a single machine may be able to replace dozens. Before we get to this point, however, the technology must become more affordable, faster, and perhaps a bit more precise. Further innovations are required within the space and one company based out of Illkirch, France seems to be doing just that.be2

BeAM, founded in 2012, is already making strides within the additive manufacturing space, particularly in Europe. They’ve been able to develop a new technique of metal 3D printing which they call CLAD, and not only do they manufacture metal components with this process, but they also are able to repair damaged parts, working with several companies, particularly within the aerospace industry.

You all are likely familiar with the metal 3D printing processes of Direct Metal Laser Sintering (DMLS) and Selective Laser Sintering (SLS), where a bed of metal powder is selectively melted via a high-powered laser beam. BeAM’s CLAD technology works also by melting metal powder, but differs greatly in the fact that no powder bed or sifting of powder is required.

Closely partnered with IREPA LASER, BeAM is able to leverage the advancements inherent within IREPA LASER’s laser technology to create a streamlined additive manufacturing process. BeAM’s 3D printers rely on their important patented CLAD nozzle system which is able to extrude two streams of metal powder at the same instant that a high-powered laser is active. The laser instantaneously melts the extruded metal powder as the nozzle moves along the X and Y axes based on computer input data. An object can then be printed or repaired one layer at a time as you can see from the video below.

The technology, which has been under development for the past 10 years, is the product of an R&D project managed by BeAM and the University of Strasbourg. Currently the company offers three separate machines which utilize their CLAD technology, and can also build customized machines for specific uses if a client so desires. Below are some general specs of all three machines currently available:

be3

Mobile CLAD

  • Machine Size: 1200 x 1500 x 2000 mm
  • Build Envelope : 400 x 250 x 250 mm
  • Configuration of the axes: 3 axes (XYZ)
  • Layer Thickness: 0.1 to 0.3 mm/layer
  • Powder Size: 45 – 75 µm

CLAD Unit

  • Build Envelope: 1000 x 700 x 700 mm
  • Configuration of the axes : 3 axes (XYZ) with up to 5 continuous axes (BC)
  • Layer Thickness: 0.2 to 0.8 mm/layer
  • Power Size: 45 – 90 µm
  • Options: One or two nozzles; one or two powder bowls making multiple material deposition possible

MAGIC

  • Machine Size: 4.37 x 3.94 x 3.5 m
  • Build Envelope: 1500 x 800 x 800 mm
  • Configuration of the axes : 3 axes (XYZ) with up to 5 continuous axes (BC)
  • Layer Thickness: 0.2 to 0.8 mm/layer
  • Powder Size: 45 – 90 µm, 50 – 150 µm
  • Options: One or two nozzles; one or two powder bowls making multiple material deposition possible

b35

BeAM is already working with numerous companies, and they have repaired hundreds of parts including aircraft engine turbines. In fact, they’ve partnered with the US-based company Chromalloy to repair numerous types of Pratt & Whitney parts, increasing the operating life of some components from 10,000 to 60,000 hours according to the company. BeAM has also assured us that they are continuing to innovate as they work with a variety of partners to further improve their CLAD technology.  For all pricing details, the company asks potential clients to contact them via their website.

BeAM’s approach is certainly an interesting one, both in their method of printing, and their ability to print on already constructed parts for repairs.  Let’s hear your thoughts on BeAM’s advanced 3D printing technology, and how 3D printing could find a niche within the metal repairs industry as well. Discuss in the BeAM 3D Printers forum thread on 3DPB.com.

Share this Article


Recent News

3D Printing Webinar and Event Roundup: March 3, 2024

3D Printing News Briefs, March 2, 2024: 3D Printed Firearms, FDA Clearance, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Unpeeled: Fatigue Strength, Electrochemical Transistors and Anycubic Hack

KTH Royal Institute of Technology along with Stockholm University has made electrochemical transistors using a Nanoscribe 3D printer. This may allow them to relatively easily make small scale and custom...

AddUp Announces Deputy CEO & Innovations in Medical & Injection Molding AM

Global metal 3D printer OEM AddUp, a joint venture between French tire giant Michelin and Paris-based industrial engineering corporation Fives, appointed Julien Marcilly as its new CEO at the end...

Daring AM: The Global Crackdown on 3D Printed Firearms Continues

In the last few years, a surge in police raids uncovering 3D printed guns has led to concerns about their growing association with criminal gangs. Although typically seen as inferior...

3D Printing Webinar and Event Roundup: February 25, 2024

It’s another busy week of webinars and events in the AM industry, including Silicone Expo Europe in Amsterdam, an open house for Massivit in North America, and the AM for...