European Space Agency Successfully Tests 3D Printed Platinum Alloy Rocket Combustion Chamber

RAPID

Share this Article

3D-printed_platinum_thruster_chamber_and_nozzleIt marks the first time a platinum combustion chamber and nozzle made with 3D printing have been tested under realistic, demanding conditions, and the developers, Airbus Defence & Space, built and tested the prototype thruster in Lampoldshausen, Germany.

The build and tests were part of a European Space Agency project dubbed Additive Manufacturing Technologies for Advanced Satellite Thrust Chamber, or AMTAC. The series of firings lasted for more than one hour, going through 618 complete ignition cycles.

Dr. Steffen Beyer, the project manager for the test firings, says the cycle included a continuous burn of 32 minutes. During that test, Beyer says the maximum temperature of 1253°C proved that the 3D printed version of the chamber and nozzle performed in a comparable way to a conventional thruster. “This is a world first,” he noted.

This combustion chamber for the 10 N Hydrazine thruster was printed using a platinum–rhodium alloy.Hot_firing_of_3D-printed_platinum_chamber_thruster

According to Laurent Pambaguian, who oversaw the project on behalf of the ESA, the project was also a test of the efficiency of 3D printing as a manufacturing method.

“The aim was to test this alternative manufacturing method as a way of reducing material costs,” Pambaguian said. “At the start we were by no means certain it could be done, or even whether the metal powder could be prepared to the appropriate quality. For production we ended up using a laser machine normally employed for making jewellery, which is the current industrial state-of-the-art for manufacturing with these metals.”

Dr. Beyer said material cost savings factored into the plan as well.

“Considering that platinum currently costs €40 a gram, 3D printing offers considerable future savings,” he explained. “We produce 150–200 thrusters in this class per year for different customers, and 3D printing should allow shorter production cycles and a more flexible production flow, such as manufacturing on demand.”

The platinum-rhodium allow powder used to fabricate the chamber and nozzle was supplied by Heraeus and then atomized by Nanoval. The AM process itself used to build the device was overseen by the Fraunhofer Institutes of Laser Technology and Machine Tools and Forming Technology.

“Platinum-rhodium was chosen for this first phase as the most mature platinum alloy for additive manufacturing. In the next phase, we will attempt to print using a new alloy, platinum-iridium, which has performance advantages,” Dr. Beyer said. “This alloy cannot easily be manufactured by traditional techniques like casting and forging, so printing is the only way it can be harnessed for space use.”

The testing and fabricating of the chamber and nozzle combination was part of the long-running Advanced Research in Telecommunications Systems program, ARTES, overseen through the ESA.3D-printed_platinum_thruster_chamber_and_nozzle detail

Tommaso Ghidini, the head of the ESA Materials Technology section, says the plan calls for the group to move into the use of materials including Inconel and copper which would allow for larger volumes. Ghidini says the Agency’s “to-do list roadmap” was prepared with the participation of industry and the ESA member states and it’s aimed at routinely employ 3D printed parts for space. He said the process includes a variety of qualification and verification procedures.

Have you heard of any other 3D printed aerospace applications which are pushing the boundaries of additive manufacturing? Let us know in the 3D Printed Platinum Combustion Chamber forum thread on 3DPB.com.

Share this Article


Recent News

BellaSeno’s Pioneering 3D Printing Facility for Medical Implants to Open in 2025

Velo3D and Desktop Metal Announce Reverse Stock Splits; while Shapeways Divests Software Assets



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Startup Accelerator: Will PanX Disrupt Simulation for 3D Printing?

I usually try to stay grounded and err on the side of little to no enthusiasm for new things. This has historically been a good approach in 3D printing. However,...

3D Printing Financials: Velo3D Sees Better Q1 2024 After Difficult Last Quarter

Velo3D‘s (NYSE: VLD) first quarter of 2024 shows signs of recovery after a challenging end to 2023. The company is reaping the benefits of its strategic realignment and cost-reduction efforts....

Wisconsin’s Evology Adds Digital Sheet Forming to Service Roster

Evology, a service bureau based in Wisconsin and specializing in serving strategic sectors like aerospace and defense, has added digital sheet forming (DSF) to its repertoire of manufacturing capabilities. Evology...

Printing Money Episode 17: Recent 3D Printing Deals, with Alex Kingsbury

Printing Money is back with Episode 17!  Our host, NewCap Partners‘ Danny Piper, is joined by Alex Kingsbury for this episode, so you can prepare yourself for smart coverage laced...