Researchers Work Together on ‘Metal Goo’ to Improve Metal Use in 3D Printing

Share this Article

Dr. Diran Apelian, a professor of mechanical engineering at Worcester Polytechnic Institute in Massachusetts and director of its Metadiranl Processing Institute, is heading up work that could revolutionize the process of 3D printing with metal.

worcester-polytechnic-institute2Metals, as we have seen, are very temperamental in additive manufacturing. Powdered metals are the norm so far, as metal 3D printing goes for now; but what if there was something better, that would produce 3D printed products in stronger and longer-lasting forms? Maybe soon, with the help of Dr. Apelian’s research and development efforts, there will be.

“There are problems with the powders,” said Dr. Apelian. “This will revolutionize the way we make things.”

“Semi-solid metals” are Dr. Apelian’s focus. He — collaborating with researchers from Massachusetts-based Viridis3D and California’s Lawrence Livermore National Laboratory — is working to develop metals that aren’t quite liquid and aren’t quite solid, which can be used in 3D printing. These gooey metals would, theoretically, replace the metal powders currently used in 3D printing.viridis_forum_logo

Using these newer materials would preclude some of the problems inherent in powdered metals, which contain oxides. The oxides in metal powders are not ideal for use in 3D printing, as they ultimately weaken the printed product in much the same way bubbles will make a dough less structurally sound.

“That’s a very bad thing,” Dr. Apelian said. “It would be like having little pin holes in a glass pane, adding lots of places where the glass could break. The powders for these high-temperature melting alloys are difficult to make and they have a lot of oxides, so it may not be as strong and may lead to failures.”

Oxides can also lead to rusting, which is generally something people want to avoid. In another nail in metal powders’ coffin, they also don’t offer a lot of material variety. “There are only a few alloys that you can get sufficient quantities of,” said James Bredt, a co-founder of Viridis 3D. “It’s a small market. The manufacturers of these metal powders are huge companies making the powders for different industries. Most [powders] don’t really work on these laser [3D printing] machines. They’re not set up to produce stuff of purity as high as you need for a laser sintering process.”

metal powder

example metal powder and structures

Without a decent variety of materials to choose from, metal powders can’t hope to produce 3D printed metal products with the scope of characteristics ultimately desired. More options of metal materials, such as various superalloys, would allow for more types of end products to be printed up that would eventually be stronger and longer-lasting than those that use metal powders.

But just what kinds of metal products could be made? Why is this such a big deal?

End products 3D printed in a better metal material could include customized, strong components used in medical, automotive, and aerospace industries. Because these industries all have exacting specifications, the performance of any component is obviously critical to ensuring safety across a number of parameters. Superalloys’ high performance capabilities — especially corrosion resistance — make them a great choice for any potential 3D printing applications within these industries.

Diran-Apelian-Howmet-Professor-of-Mechanical-Engineering

Dr. Diran Apelian

Further benefits of working with semi-solid metal materials include lower costs of production, which when scaled up could have huge implications. The processing temperatures required for metal powders are relatively high, which can cause a significant uptick in energy costs for production facilities. By taking down the required temperatures (those of semi-solid metals are much lower), manufacturing can maintain high quality at a lower expense.

Granted, there are still some issues to be worked out with an all-new form of material used in 3D printing. “How do you control gooey, mushy metals so you have high precision when you make the deposit?” Dr. Apelian asked. “I have to control the thixotropy or how the flow changes under the application of a force. I have to make sure it’s flowing in a controlled manner.”

All told, Dr. Apelian estimates actual testing of the semi-solid metals will begin in about 1.5 years. Once they figure out the properties of the semi-solid, gooey metal material, they need to work on producing it (how much will it cost to make in larger batches?) and actually using it (how will it handle in a 3D printer?). Once they get that far, steps toward eventual commercialization can really commence.

“We’re not doing any printing yet until we know what we’re doing,” Dr. Apelian noted. “When I understand what’s going on, then I’ll print. I want to know what the issues are and figure it out and then I’ll go work on it. It’s all the prep work ahead of time.”

Discuss the possible implications of such a new material in the ‘3D Printing with Metal Goo‘ forum thread on 3DPB.com.

Facebook Comments

Share this Article


Related Articles

RAPID 2019: 3D Printed Artwork, Booth Visits, and Press Conferences

nScrypt Develops In Situ 3D Printing Inspection System



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

FELIXprinters Providing Bespoke 3D Printing Solutions for Specific Customer Applications

Last month, family-owned industrial 3D printer manufacturer FELIXprinters officially launched its next generation Pro L and Pro XL 3D printers from its corporate headquarters and factory in the Netherlands – solidifying...

Switzerland: Exciting New Technology Multi-Metal Electrohydrodynamic Redox 3D Printing

Researchers from Switzerland explain more about how metals dissolved and re-deposited in liquid solvents can further AM processes by promoting fabrication without post-processing. Their findings are outlined in the recently...

Big Push in Germany to Enable 3D Printing in Automotive Industry

3D printing and additive manufacturing have become a matter of national importance in Germany, and to the automotive industry overall. Several organizations—along with the ongoing support of the Fraunhofer Institute...

Polish Company CD3D Opens Largest 3D Bioprinting Cluster in Europe

Centrum Druku 3D, or CD3D, is the largest online website devoted to 3D printing technology in Poland. Launched in 2013 with an online portal, the company’s operations are based on two...


Training


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!