Researches Find Way to 3D Print Blood Vessels – Could lead to transplatable tissue

Share this Article

blood

credit: Khademhosseini Lab.

The field of medical science has been advancing at an extraordinary rate over the past decade or so, thanks in part to the advancement in technology. One of these ‘up-and-coming’ technologies is the 3D printing of biomaterial, referred to as 3D bioprinting. Only recently has 3D bioprinting become a popular tool in trying to solve issues that have posed problems for medical scientists since the beginning of time.

One of these issues, that medical science has been working towards finding a solution to, is the fact that up until now there has been no way to create man-made blood vessels from scratch. Doing so could solve many problems within medicine. Blood vessels are extremely important to the human body, as they transfer nutrients to and from vital organs, as well as remove waste material. The ability to create man-made channels for blood to flow throughout the human body, is something that scientists have been trying to do for years.bloodv2

It appears that a team of researchers at Brigham and Women’s Hospital (BWH) in Boston, MA may have come up with a solution. Using 3D printing technology – more particularly 3D bioprinting, they have come up with an effective way to create an agarose fiber template to be used as a mold for real blood vessels. An agarose is a naturally derived sugar-based molecule, for those of you who were wondering.

“Engineers have made incredible strides in making complex artificial tissues such as those of the heart, liver and lungs,” said senior study author, Ali Khademhosseini, PhD, biomedical engineer, and director of the BWH Biomaterials Innovation Research Center. “However, creating artificial blood vessels remains a critical challenge in tissue engineering. We’ve attempted to address this challenge by offering a unique strategy for vascularization of hydrogel constructs that combine advances in 3D bioprinting technology and biomaterials.”

This mold that was created was then covered with a hydrogel substance, which formed a cast over it, prior to being reinforced by photocrosslinks, a process that usually involves ultraviolet light.

“Overall, our proposed strategy represents an effective technique for vascularization of hydrogel constructs with useful applications in tissue engineering and organs on a chip,” explained the team at BWH.

While all this is great news for the medical community, we are still probably years away from being able 3D print real living blood vessels that can be transplanted into a human beings organs and tissue.

“In the future, 3D printing technology may be used to develop transplantable tissues customized to each patient’s needs or be used outside the body to develop drugs that are safe and effective,” said Khademhosseini.

This is certainly a step in the right direction, and another way that 3D printing is showing one of its multiple uses. 3D bioprinting will certainly be one of those technologies that continues to grow within the medical community. It’s just a matter of time before we start seeing entire organs begin to be printed.  One of the problems researchers are having when trying to  3D print organs, is the lack of a  reliable method of printing blood vessels and arteries within those organs.  This research may bring us a step closer to realizing that goal.

What do you think about this new technology? Discuss in the ‘3D bioprinting of blood vessels‘ thread on 3DPB.com

bloodv

[source]

Share this Article


Recent News

Additive Manufacturing Collaboration: Ai Build & WEBER Offer Advanced Large-Scale 3D Printing Solutions

Qrons is Developing 3D Printable Implants to Treat Brain Injuries



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Awakens Renewed Interest in Polymeric Heart Valves for Patient-Specific Treatment

Authors Charles D. Resor and Deepak L Batte review the recent work of André R. Studart and his co-researchers in creating artificial heart valves via 3D printing. Their findings are...

3D Printed Microfluidic Device Designed to Customize Cancer Treatment

Testing cancer treatments is a lot of trial and error currently, and patients are often subject to multiple uncomfortable and time-consuming therapies before finding one that works. Developments have been...

Comparing the Operational Characteristics of Plastic 3D Printed Spur Gears

Spur gears, which can achieve high transmission ratio and energy efficiency, are comment elements used in the transmission of motion and high intensity power for mechanical power drives, i.e. belt...

Russian Researchers Develop Biocompatible 3D Polymeric Materials for Tissue Repair

Many researchers and scientists have turned to 3D printing for applications in tissue engineering, and a team from the Polymer Materials for Tissue Engineering and Transplantology Laboratory of Peter the Great St....


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!