Soon You’ll Roll Up Your 3D Printed, LE-OFET, Flexible Computer And Put It in Your Shirt Pocket

RAPID

Share this Article

Organic Field-Effect Transistors (OFETs) were originally developed to produce extremely low-cost, large-area electronics aimed at producing printable and flexible electronic devices.

Researchers at Japan’s National Institute for Materials Science say improvements are now in the offing that will allow for the manufacture of transistors which can be used to make highly flexible and paper-thin computer screens and displays.

EMB00000ce07cb2They’re also sure to find applications in the world of 3D printing.

These photoactive organic field-effect transistors incorporate organic semi-conductors, can amplify weak electronic signals, and then either emit or receive light. And since their appearance on the scene in 2003, researchers say that enormous steps forward have been made in the development of one variant: light-emitting organic field-effect transistors (LE-OFETs).

untitledThe photoactive OFETs are divided into two types; light-emitting (LE) and light-receiving (LR) OFETs. They are categorized according to functionality. The devices can function as non-volatile optical memories, phototransistors, and photochromism-based transistors.

In both cases a variety of configurations can produce devices like thin-film based transistors for practical applications and nanowiring.

And here’s where the technology gets truly interesting. Light-receiving organic field-effect transistors will break new ground for photonic and electronic devices and result in the creation of flexible displays where all the various device components (light-emitting elements, switching parts and the substrates) – are made of plastic materials.

For the most part, plastic materials mean “3D printable” materials.

As those materials have already been created and are expected to appear on the market in the near term, LE-OFETs are thought to be completely compatible with existing and popular electronic technologies.

flexible all plastic 3d printed displays 2The Japanese researchers say the performance of devices which incorporate both light-emitting and light-receiving transistors is currently hampered by a number of issues, and that collaborative effort among organic chemists and device physicists will be required to resolve those stumbling blocks.

While the team say it may take ten years before all-plastic and highly flexible computing devices appear on the market, the technology is already attracting interest from a wide range of interested parties.

Yutaka Wakayama of the International Center for Materials Nanoarchitectonics (WPI-MANA) and the National Institute for Materials Science (NIMS) worked in conjunction with Ryoma Hayakawa and Hoon-Seok Seo on the research.

Can you see applications of OFET technology in the 3D printing sphere? Let us know your thoughts in the 3D Printed Flexible Computer forum thread on 3DPB.com.

Share this Article


Recent News

3D Printing Serves as a Bridge to Mass Production in New Endeavor3D White Paper

3DPOD Episode 200: Joris and Max Wax Philosophic on Five Years of Podcasting



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Printing Money Episode 18: The DC Fly-In with Mark Burnham, AddMfgCoalition

It’s only been a week since the previous show, but Printing Money is back already with Episode 18. Certain events call for Printing Money’s coverage, and the recent 2nd Annual...

3DPOD Episode 199: Collaborative Design with Graham Bredemeyer, CEO of CADchat

About a decade ago, entrepreneur Graham Bredemeyer started Collider, a company that combined the best of 3D printing with injection molding. Now he runs CADChat, which hopes to make sharing...

Printing Money Episode 17: Recent 3D Printing Deals, with Alex Kingsbury

Printing Money is back with Episode 17!  Our host, NewCap Partners‘ Danny Piper, is joined by Alex Kingsbury for this episode, so you can prepare yourself for smart coverage laced...

3DPOD Episode 198: High Speed Sintering with Neil Hopkinson, VP of AM at Stratasys

Neil Hopkinson, a pioneering 3D printing researcher, played a pivotal role in developing a body of research that is widely utilized today. He also invented High Speed Sintering (HSS), also...