Current and Future Applications for Directed Energy Deposition

RAPID

Share this Article

Directed energy deposition (DED) has emerged as a transformative technology, with its inherent ability to build new components, repair existing components, and enhance performance through multi-material solutions. This technology operates on the principle of precisely depositing material layer by layer, enabling the creation of intricate geometries with a wide range of materials. The feedstock includes both powder and wire that can be sourced commercially, typically at a significant cost advantage over other AM process feedstocks. At the forefront of the DED evolution stands FormAlloy, a pioneering force leveraging smart DED systems to reshape industries and set new benchmarks in performance and durability.

While multi-material and functionally graded components are being explored and researched, FormAlloy’s current end-use applications for DED include the defense industrial base (DIB), aerospace, energy, and consumer goods companies. High-value parts (due to material or simply availability) such as large brackets and aircraft landing gear components are utilizing DED to keep up with demand by manufacturing and repairing existing components. Both powder and wire are currently used as feedstock, depending on the performance requirements, cost, and availability of material.

But what makes DED so special beyond the versatility of application and material? The ability to sense and utilize in-situ machine and build data, not only real-time during the build, but for post-build analysis to support qualification and certification, is also possible with smart DED systems. FormAlloy developed a framework to sense and export data during the initial machine design and production over 8 years ago, and has continued to follow that framework as new sensors and hardware modules have become available. Today, FormAlloy’s DEDSmart® systems are arguably the only metal additive manufacturing (AM) systems that provide full time-stamped, open-source build data direct to the users.

The Future: Unveiling the Potential of Functionally Graded Materials (FGMs) and Custom Alloys

While FormAlloy’s current applications of DED are already revolutionizing manufacturing, the horizon holds even more promising advancements in materials. Looking ahead, the company foresees a transformative shift towards the adoption of Functionally Graded Materials (FGMs) in various industries. This includes consumer goods applications currently in development that will enhance the performance and lifetime for product end-users, and ultimately a competitive advantage for the companies producing the goods. When compared to traditional methods of applying an alternative material to an existing part, DED has outperformed due to the metalurgical bond achieved with the process, and the ability to slowly transition to the new material. Custom alloys are also being developed at a record pace, including one DED user who is now able to synthesize and evaluate up to 100 different alloys in a 24-hour period.

Unlike conventional materials treated as discrete entities, FGMs unlock an array of possibilities where material properties gradually transition, catering to specific performance requirements throughout a component. To visualize this concept, consider a turbine blade. As you move along a turbine blade in operation, different areas are experiencing different stress factors and environments. In a heat exchanger application, specific control over thermal properties can be exhibited. So, why not tailor the build of the blade or heat exchanger to account for that reality? In the future, it will.

As industries seek advancements to meet evolving demands, FormAlloy’s smart DED systems hold promise not only today, but for the future. In the future, the manufacturing landscape will entail the ability to build and repair, but also built with tailored material properties, revolutionizing performance, and durability across defense and industrial sectors.

Melanie Lang, Co-Founder and CEO of FormAlloy, will be participating at the upcoming Additive Manufacturing Strategies business summit in New York, February 6 to 8, 2024. Lang will be speaking a panel on Large-Format Metal AM.

Share this Article


Recent News

3YOURMIND & Nigerian Oilfield Services Firm RusselSmith Team Up on 3D Printed Part Inventory

Indian Startup Unveils New Open-Source 3D Printer Mainboard on GitHub



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, April 27, 2024: Research, Digital Dentistry, Cycling, & More

We’re starting today’s 3D Printing News Briefs with some research into 3D printed luminescent quantum-dot polymer architectures and free-form laser beam shaping, and then on to an open source 4-axis...

HP & INDO-MIM Collaborate to Boost Metal 3D Printing in India

HP Inc. and INDO-MIM, a US- and India-based supplier of metal injection molding (MIM) powders and contract manufacturer, have announced that the two companies will collaborate to accelerate additive manufacturing...

3D Printing News Briefs, February 17, 2024: Shot Blasting, Service Bureaus, & More

In today’s 3D Printing News Briefs, we’re starting out with post-processing, as SKZ Würzburg is using a shot blast system from AM Solutions for its research. Moving on to business,...

3D Printing News Unpeeled: Not That Kind of Organ 3D Printing

GKN Aerospace will create a 150 jobs in Trollhattan Sweden with an investment of $60 million part of which comes from the Swedish Energy Agency’s Industriklivet initiative. The investment will...