RAPID

3D Printing News Unpeeled: Impossible Objects, Soft Tissue Bitmaps and Aerorise

Eplus 3D

Share this Article

Weber University’s Miller Advanced Research and Solutions Center (MARS Center) has bought an Impossible Objects Composite-Based Additive Manufacturing system the CBAM-2. It is now reportedly using the system to make upgrades to spare parts. This is something I’m super excited about the idea of not only replacing old spare parts but improving on them as well using 3D printing. It is helping the Air Force on making restraining straps for first aid kits. These were first made in the 70´s and 80´s but were breaking because newer first aid kids are heavier. Now they used PEEK CF parts made on Impossible Objects machine to replace them. I think that potentially there is an aftermarket for everything in the world and think that this is a great example of this. 

In the paper, “Defining Soft Tissue: Bitmap Printing of Soft Tissue for Surgical Planning” by Robert MacCurdy and team the CU Boulder and CU Anschutz Medical Campus researchers of the University of Colorado have shown us how to make a six material bitmap based on a DICOM file. Using their own software the team now have a more accurate representation of the human body by defining it as a bitmap that maps voxels. This is great news for Stratasys for example whose J750 printers can take advantage of this through giving a more accurate 3D printed representation of soft tissue. The files now have better “spatial and contrast resolution to current 3D modeling methods, and contain previously unachievable spatial fidelity for soft tissue differentiation.”

So why don’t we do the same for Jack Wolfskin Aerorise backpacks? You can now buy these packs with four 3D printed back pads. They’re printed by Oechsler on Carbon systems using Carbon’s dual-cure elastomer EPU 41. They have lattices which have different hardness, softness and rigidity on different areas of the pad. This helps the pad give better cushioning and ventilation at the same time. But, what if we could combine Carbon’s ParaMatters software with Twikit or Trinkle and then have a voxel level mass customized lattice structure giving you a unique set of pads with unique properties for just you. So not just the size of them but the individual levels and areas of rigidity and softness especially and uniquely just for you. What if we then do this for shoes, headrests and tennis racket handles? Would be great right? 

Share this Article


Recent News

3D Printing News Briefs, March 25, 2023: Software Launch, Dental Ceramics, & More

Jabil & KAV Sports Collaborate on Custom Material for 3D Printed Bike Helmets



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Louisville Slugger Knocks it out of the Park Designing Bats with Formlabs 3D Printers

In 2022, historical bat brand Louisville Slugger revealed a new strategy to optimize its product, combining digital simulation for the design process and 3D motion capture technology for comprehensive baseball...

3D Printing News Briefs, March 22, 2023: Carbon Sequestration, 3D Printed Bird Drones, & More

In 3D Printing News Briefs today, Meltio is expanding its worldwide partner network, and 3D Systems introduced its VSP Connect portal. Oregon State University and Sandia National Laboratories received a...

3D Printing News Briefs, March 18, 2022: Amphibian Aerospace, Olympics, & More

Multistation signed a distribution agreement with BigRep, and JPB Système reports a major milestone, while Nupress will deliver amphibian aerospace applications with SPEE3D technology. HP introduced its new Single Cell...

3D Printing News Briefs, March 15, 2023: Software, Carbon Fiber Bikes, & More

In today’s 3D Printing News Briefs, Velo3D has released the latest version of its Flow software, and Horizon is opening up more micro additive manufacturing applications with a coating that...