AM Energy

3D Printed Sensors Developed to Aid Lupus Patients

AMR Military

Share this Article

Researchers from the University of Minnesota are one step closer to helping millions of Lupus patients worldwide. A small team of dedicated scientists and doctors have created a 3D printed light sensing device that will be able to correlate light sensitivity to a patient’s Lupus symptoms. From the work, scientists could glean new insights into the disease and help doctors better treat Lupus all over the world. 

Light and Lupus: A Complex Relationship

Lupus affects roughly five million people worldwide, and can cause rashes, joint pain, and fatigue. This can be debilitating to the person, and research has shown their symptoms worsen when exposed to sunlight or artificial sunlight. Although they have known there was a correlation between the two, doctors have found it challenging to predict how each individual will be affected by the light. 

David Pearson, a dermatologist at the University of Minnesota’s Medical School, wanted to tackle this issue head on after working with many Lupus patients during his time in Minnesota. Seeking to better understand the correlation between light and Lupus symptoms, Pearson sought out Michael McAlpine, a professor from the university who has developed wearable medical devices in the past. 

3D Printed Light Detector

Together, Pearson and McAlpine created a 3D printed UV-visible light detector that could be placed on the skin and worn continuously throughout the day. The device is able to monitor UV-Vis exposure and correlate that exposure to a patient’s symptoms. Built using previous work from McAlpine’s group, the team was successfully able to modify a 3D printed light emitting device and convert it into a light receiving device, seen below.

The device will soon start clinical trials after its recent approval for human subject testing, and hopefully the studies give doctors insights into Lupus never before understood. The project joins a long list of others in which 3D printing is used to help better understand health and medicine. Feasibly, such devices could be printed in doctor’s offices worldwide. We can imagine a patient sitting down and, within the duration of the appointment, their doctor determining the impact of different wavelengths’ affect before printing a device personalized to them. More work will need to be done before that dream becomes a reality. However, if the University of Minnesota continues to progress like it has, we will get there. 

Share this Article

Recent News

3D Printing Webinar and Event Roundup: February 25, 2024

3D Printing News Briefs, February 24, 2024: Large-Format Metal AM, Personalized Medicine, & More


3D Design

3D Printed Art

3D Printed Food

3D Printed Guns

You May Also Like

Materialise Expands Jaw Surgeries with End-to-End Medical 3D Printing Treatment

Imagine the discomfort of experiencing pain every time you eat, or the constant radiating pain in your head due to this condition—it would be incredibly distressing. One reason why joint...


Navigating China’s 3D Printing Industry in 2024

China’s 2024 economic landscape presents a complex matrix of challenges and opportunities, deeply influenced by the aftermath of the COVID-19 pandemic, regulatory adjustments, and the global economic environment. Amid these...

3D Printing News Briefs, February 17, 2024: Shot Blasting, Service Bureaus, & More

In today’s 3D Printing News Briefs, we’re starting out with post-processing, as SKZ Würzburg is using a shot blast system from AM Solutions for its research. Moving on to business,...

Farsoon Expands U.S. 3D Printing Presence with Additive Plus Partnership on the West Coast

As members of China’s additive manufacturing (AM) sector expand further into the West, one of the nation’s leading firms, Farsoon Technologies, has announced a strategic partnership with Additive Plus. This...