3D Printed Sensors Developed to Aid Lupus Patients

IMTS

Share this Article

Researchers from the University of Minnesota are one step closer to helping millions of Lupus patients worldwide. A small team of dedicated scientists and doctors have created a 3D printed light sensing device that will be able to correlate light sensitivity to a patient’s Lupus symptoms. From the work, scientists could glean new insights into the disease and help doctors better treat Lupus all over the world. 

Light and Lupus: A Complex Relationship

Lupus affects roughly five million people worldwide, and can cause rashes, joint pain, and fatigue. This can be debilitating to the person, and research has shown their symptoms worsen when exposed to sunlight or artificial sunlight. Although they have known there was a correlation between the two, doctors have found it challenging to predict how each individual will be affected by the light. 

David Pearson, a dermatologist at the University of Minnesota’s Medical School, wanted to tackle this issue head on after working with many Lupus patients during his time in Minnesota. Seeking to better understand the correlation between light and Lupus symptoms, Pearson sought out Michael McAlpine, a professor from the university who has developed wearable medical devices in the past. 

3D Printed Light Detector

Together, Pearson and McAlpine created a 3D printed UV-visible light detector that could be placed on the skin and worn continuously throughout the day. The device is able to monitor UV-Vis exposure and correlate that exposure to a patient’s symptoms. Built using previous work from McAlpine’s group, the team was successfully able to modify a 3D printed light emitting device and convert it into a light receiving device, seen below.

The device will soon start clinical trials after its recent approval for human subject testing, and hopefully the studies give doctors insights into Lupus never before understood. The project joins a long list of others in which 3D printing is used to help better understand health and medicine. Feasibly, such devices could be printed in doctor’s offices worldwide. We can imagine a patient sitting down and, within the duration of the appointment, their doctor determining the impact of different wavelengths’ affect before printing a device personalized to them. More work will need to be done before that dream becomes a reality. However, if the University of Minnesota continues to progress like it has, we will get there. 

Share this Article


Recent News

Will There Be a Desktop Manufacturing Revolution outside of 3D Printing?

Know Your Würth: CEO AJ Strandquist on How Würth Additive Can Change 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Pressing Refresh: What CEO Brad Kreger and Velo3D Have Learned About Running a 3D Printing Company

To whatever extent a business is successful thanks to specialization, businesses will nonetheless always be holistic entities. A company isn’t a bunch of compartments that all happen to share the...

Würth Additive Launches Digital Inventory Services Platform Driven by 3D Printing

Last week, at the Additive Manufacturing Users’ Group (AMUG) Conference in Chicago (March 10-14), Würth Additive Group (WAG) launched its new inventory management platform, Digital Inventory Services (DIS). WAG is...

Featured

Hypersonic Heats Up: CEO Joe Laurienti on the Success of Ursa Major’s 3D Printed Engine

“It’s only been about 24 hours now, so I’m still digesting it,” Joe Laurienti said. But even via Zoom, it was easy to notice that the CEO was satisfied. The...

Featured

3D Printing’s Next Generation of Leadership: A Conversation with Additive Minds’ Dr. Gregory Hayes

It’s easy to forget sometimes that social media isn’t reality. So, at the end of 2023, when a burst of doom and gloom started to spread across the Western world’s...