UCLA Materials Scientists Awarded Grant for 3D Printed Batteries

Share this Article

The University of California, Los Angeles (UCLA) announced that a team of materials scientists at the university’s Samueli School of Engineering has received a grant to develop a new additive manufacturing (AM) process for lithium-ion battery production. The US Department of Energy (DOE) will give the team $900,000 towards its research.

The UCLA team will be headed by two professors of materials science and engineering, Bruce Dunn —also the interim dean of the engineering school — and Morris Wang. The team will also work with researchers from the Silicon Valley-based Lawrence Livermore National Laboratory (LLNL) on the project.

One of the most influential Federally Funded Research and Development Centers (FFRDCs), the LLNL depends mainly on DOE funds. Historically, its primary work involves management of the US’s nuclear weapons stockpile. However, the LLNL’s focus on computer science has allowed it to branch out into the full array of advanced scientific fields, including a diverse range of energy technologies.

3D Printed lithium-ion batteries. Image courtesy of Blackstone Resources

The money was allotted from a total of $57.9 million awarded to 30 different renewable energy projects back in June, via the DOE’s Advanced Manufacturing Office (AMO). At least 8 of those projects involve AM, and, including the UCLA and LLNL project, 5 of those involve lithium-ion batteries.

Specifically, the project that UCLA/LLNL were awarded the grant for is titled, “Direct Ink Writing of 3D Architectures for Lithium-Ion Batteries”. In the project description, it states, “Introducing 3D structures to Li-ion electrodes enables an increase in surface area relative to electrode volume.” Essentially, the team will be trying to utilize the complex lattice structures characteristic of AM to create lithium-ion batteries capable of charging more quickly, while also storing more power.

Image courtesy of UCLA

Lithium-ion batteries are still the most commonly used in all the devices and cars and refrigerators, etc. comprising the IoT. On the other hand, lithium iron phosphate (LFP) batteries have become increasingly preferred for a variety of reasons in recent years, and LFP batteries certainly seem poised to become the most prevalent, in the not-too-distant future.

Yet, as the makeup of the grantees for the DOE money shows, there have also been many significant developments lately regarding AM applications for producing lithium-ion batteries. Long-term, these applications have potential, in particular, owing to the possibility of using recycled materials in AM-driven circular economies. Thus, the current waning in customer preference for lithium-ion could, in the long run, end up being a positive for lithium-ion’s market share, if applications for printed batteries made from recycled materials continue to gain traction.

Share this Article


Recent News

3D Printing Webinar and Event Roundup: September 8, 2024

3D Printing News Briefs, September 7, 2024: Ceramics & e-Beam, 3D Circuits, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Unpeeled: Custom Cycling Shoes and Microwave Curing

 Lawrence Livermore National Laboratory (LLNL) has developed Microwave Volumetric Additive Manufacturing (MVAM), which uses microwaves to cure 3D printed parts. In a paper they explain that a multi-physics model let...

Ceramics 3D Printing Market to Hit Nearly $1B by 2033

Additive Manufacturing (AM) Research has published its latest report, this time covering the rapid growth of the ceramics 3D printing sector. According to the market research firm’s “Ceramics 3D Printing...

3D Printing News Unpeeled: $970 Million Contract, Plasters and HEA

Researchers from the University of Pennsylvania, the University of Colorado, NIST and more have worked on “Additive manufacturing of highly entangled polymer networks,” where low use of photoinitiators along with a...