Exone end to end binder jetting service

Looking towards a FRESH future in 3D bioprinting

INTAMSYS industrial 3d printing

Share this Article

FluidForm’s Adam Feinberg will be speaking at 3DPrint.com’s upcoming AMS online industry summit (Feb 9-10, 2021). Register here.

On January 16th, 2021, President Joe Biden introduced his science team for the incoming administration and made it clear that science and technology will see growing investment over the next 4 years. Even more exciting was Biden’s statement to imagine a future with “3-D printers restoring tissue after traumatic injuries and hospitals printing organs for organ transplant.”

It seems that this may finally be the decade that 3-D bioprinting moves from the realm of science fiction to a widely available clinical reality. Indeed, the past 5 years has seen major research advances in 3-D bioprinting that include perfusable vascular-like networks for rapidly building tissues, functional pieces of organs such as breathing lung alveoli and beating heart chambers, implantable scaffolds for repair of the spinal cord and the musculoskeletal system, and even full-size human heart scaffolds. However, it is important that the industry remains clear-eyed about the challenges that stand between where we are today, and the future that we are all striving to achieve.

It has been over 30 years since the field of tissue engineering first promised the ability to build replacement tissues, and nearly a decade since Organovo emerged as the first public company promising that 3-D bioprinting is the technology to make it happen. But the reality has been harsh. Today there are essentially no tissue engineered medical products on the market. The question many of us in the field have is whether now is the time that industry and the federal government will make the large-scale investments necessary to make good on the vision of 3-D bioprinted tissues and organs.

At FluidForm we believe the answer is yes, and that science will lead the way. More specifically, that we need to develop not just better printers and materials, but a deep understanding of how living cells interact with the scaffolds we build to develop instructive environments that speak the language of biology. Built on a technology known as Freeform Reversible Embedding of Suspended Hydrogels (FRESH™) printing licensed from Carnegie Mellon University, FRESH™ leverages a unique gel-like environment within which we can 3-D bioprint the widest combination of cells, bioinks, and biomaterials possible in nearly any direction to match properties of living tissue.

As a starting point, one can look at the human body and the way tissues and organs are created for inspiration. By dry weight, each of us is more collagen than anything else. In fact, collagen is the primary extracellular matrix (ECM) protein of nearly every tissue and organ in the body, making it one of the most exciting biomaterials to use in 3-D bioprinting. In 2019 our team published an improved version of FRESH™ printing in Science demonstrating that not only can native collagen be printed with high resolution, but that we can use this to create functional parts of the human heart. Importantly, the impact of using collagen for biofabrication is its ubiquity, enabling FluidForm to build tissue scaffolds for bone, cartilage, connective tissue, and many other applications.

Looking forward, we see FRESH™ 3-D bioprinting as a foundational technology, not because of what we have achieved to date, but because of what we see being built with FRESH™ in the future. As noted, it is going to take rigorous science to drive us towards realizing the vision of 3-D bioprinted organs that President Biden has brought to national attention. This is a primary reason that FluidForm’s first commercial product is LifeSupport™, a version of the FRESH™ support gel that we have made available through major partners to enable academic and industrial researchers to do innovative science and develop new high-impact applications. To that end, our internal development projects are focused on accelerating translation forward to the clinic and include medical devices, regenerative scaffolds for soft tissue repairs, biopharma models, and a 1st generation of 3-D bioprinted organs.

Share this Article


Recent News

3D Printing Tunneling Machine Takes Second in Elon Musk Competition

Materialise Releases Software Module for Dental 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Fuse 1 First Benchtop SLS 3D Printer Certified for Dental 3D Printing

Formlabs already has firm footing in the dental market, with its biocompatible resins and FDA-certified stereolithography (SLA) 3D printers, the Form 3B and Form 3BL. Now, the Massachusetts 3D printing...

3D Printing Webinar and Event Roundup: September 19, 2021

We’ve got another busy week of webinars and events to tell you about! Topics in this week’s roundup run the gamut from 3D digital textures and FDM 3D printing potential...

Stratasys Announces New Materials and Software Services At RAPID + TCT 2021

As the RAPID + TCT 2021 event kicks off at McCormick Place in Chicago for its 30th year, pioneering 3D printing manufacturer Stratasys announced new innovative material offerings, an expanded...

What Makes Materialise So Good? And Where Is It Weak?

Materialise (Nasdaq: MTLS) is a thirty-year-old Belgian, now public, 3D printing software and service company. Since inception, it has been lead by Fried Vancraen, a brilliant scientist-turned-entrepreneur who has instilled...


Shop

View our broad assortment of in house and third party products.