Joint Project Aims to Develop Hydraulic Exoskeletons with 3D Printed Components

Share this Article

 A joint research project between HAWE Hydraulik, the Technical University of Munich, and voxeljet AG aims to develop lightweight exoskeletons from a modular design kit.  The project brief calls for an exoskeleton “comparable in size and shape to a human arm,” with key connecting components printed by voxeljet.

TUM has a long history of innovation in exoskeleton design. In 2014, TUM researcher Gordon Cheng and his team gained worldwide fame when a paraplegic man wearing their exoskeleton kicked off the first ball at the FIFA world cup. Since then, Dr. Cheng’s team has found that wearing an exoskeleton doesn’t just help people in the moment: it promotes a long-term increase in motor function.

The exoskeleton proposed in this joint research project would use a hydraulic system and 3DP parts for lightness and power (Image via HAWE Hydraulik).

This time, the university’s exoskeleton research will rely on hydraulic parts and 3D printing. To make the exoskeleton more powerful and allow users to go longer between charges, the exoskeleton will be powered by an electrohydraulic system made by HAWE. The system will be made up of a small power unit, a hose system, and a hydraulic cylinder, and will function as the “muscles” of the exoskeleton.

The “tendons” of the exoskeleton, holding it together, will be made via additive manufacturing. Voxeljet AG is a Germany-based company that works primarily in sand and polymer-based binder-jetting, specializing in molds for metal casting. On this project, they will be making connecting parts like integrated hose feed-throughs to make them lighter. The brief calls for “thin-walled, lightweight structures with long cavities and small diameters” to connect the exoskeleton together.

If all goes well, the final prototype will be “comparable in size and shape to a human arm.” While the word “exoskeleton” calls to mind images of a heavy, full-body suit, this prototype follows in the footsteps of other partial-body exoskeletons made using additive manufacturing. The main concern is flexibility; the researchers are hoping to create an exoskeleton capable of end goals from medical rehabilitation to handicraft-making.

Because the end users include people undergoing rehabilitation, the project’s other main goal is lightness. “Every gram counts,” the project brief says, “since the user should not be burdened with a high additional weight.”

Share this Article


Recent News

VELO3D’s Metal 3D Printers Bought by Two Aerospace Customers

Wayland Additive Sells Electron Beam Metal 3D Printer to First Customer



Categories

3D Design

3D Printed Art

3D Printed Guns

3D Printer Reviews


You May Also Like

Featured

An Unforgettable AMUG | 3D Printing Leadership Redefined in 2021

“Please wear a mask in public spaces,” the Hilton Hotel lobby signage makes it pretty clear upon arrival that they want their guests to feel comfortable and safe while on...

Laser Wars: ScanLAB to Democratize Powder Bed Fusion?

We’ve all been a party to the laser wars, in which a tiny clique of powder bed fusion firms are outdoing each other on seeing how many lasers they can...

FIT AG and pro-beam Team up for (DED & PBF) Electron Beam Metal 3D Printing

The world of electron beam 3D printing is suddenly becoming larger. Whereas it was previously dominated by a single company, GE’s Arcam, there have been a number of new entrants...

AZO and AddUp Partner to Automate Powder Handling for Metal 3D Printing

Metal powders are some of the most finicky materials in the 3D printing industry in that, not only do the metal particles require a high level of consistency, sphericity, and...


Shop

View our broad assortment of in house and third party products.