Joint Project Aims to Develop Hydraulic Exoskeletons with 3D Printed Components

IMTS

Share this Article

 A joint research project between HAWE Hydraulik, the Technical University of Munich, and voxeljet AG aims to develop lightweight exoskeletons from a modular design kit.  The project brief calls for an exoskeleton “comparable in size and shape to a human arm,” with key connecting components printed by voxeljet.

TUM has a long history of innovation in exoskeleton design. In 2014, TUM researcher Gordon Cheng and his team gained worldwide fame when a paraplegic man wearing their exoskeleton kicked off the first ball at the FIFA world cup. Since then, Dr. Cheng’s team has found that wearing an exoskeleton doesn’t just help people in the moment: it promotes a long-term increase in motor function.

The exoskeleton proposed in this joint research project would use a hydraulic system and 3DP parts for lightness and power (Image via HAWE Hydraulik).

This time, the university’s exoskeleton research will rely on hydraulic parts and 3D printing. To make the exoskeleton more powerful and allow users to go longer between charges, the exoskeleton will be powered by an electrohydraulic system made by HAWE. The system will be made up of a small power unit, a hose system, and a hydraulic cylinder, and will function as the “muscles” of the exoskeleton.

The “tendons” of the exoskeleton, holding it together, will be made via additive manufacturing. Voxeljet AG is a Germany-based company that works primarily in sand and polymer-based binder-jetting, specializing in molds for metal casting. On this project, they will be making connecting parts like integrated hose feed-throughs to make them lighter. The brief calls for “thin-walled, lightweight structures with long cavities and small diameters” to connect the exoskeleton together.

If all goes well, the final prototype will be “comparable in size and shape to a human arm.” While the word “exoskeleton” calls to mind images of a heavy, full-body suit, this prototype follows in the footsteps of other partial-body exoskeletons made using additive manufacturing. The main concern is flexibility; the researchers are hoping to create an exoskeleton capable of end goals from medical rehabilitation to handicraft-making.

Because the end users include people undergoing rehabilitation, the project’s other main goal is lightness. “Every gram counts,” the project brief says, “since the user should not be burdened with a high additional weight.”

Share this Article


Recent News

EOS & AMCM Join Forces with University of Wolverhampton to Establish UK Centre of Excellence for Additive Manufacturing

3D Printing News Unpeeled: Better Elastomers, Mailbox Keys and Origami Networks



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Unpeeled: New Arkema Material for HP, Saddle and Macro MEMS

A new Arkema material for MJF is said to reduce costs per part by up to 25% and have an 85% reusability ratio. HP 3D HR PA 12 S has been...

3D Printing News Briefs, January 20, 2024: FDM, LPBF, Underwater 3D Printer, Racing, & More

We’re starting off with a process certification in today’s 3D Printing News Briefs, and then moving on to research about solute trapping, laser powder bed fusion, and then moving on...

3D Printing Webinar and Event Roundup: December 3, 2023

We’ve got plenty of events and webinars coming up for you this week! Quickparts is having a Manufacturing Roadshow, America Makes is holding a Member Town Hall, Stratafest makes two...

Formnext 2023 Day Three: Slam Dunk

I’m high—high on trade show. I’ve met numerous new faces and reconnected with old friends, creating an absolutely wonderful atmosphere. The excitement is palpable over several emerging developments. The high...